scholarly journals Co-simulation of cyber-physical systems using a DEVS wrapping strategy in the MECSYCO middleware

SIMULATION ◽  
2018 ◽  
Vol 94 (12) ◽  
pp. 1099-1127 ◽  
Author(s):  
Benjamin Camus ◽  
Thomas Paris ◽  
Julien Vaubourg ◽  
Yannick Presse ◽  
Christine Bourjot ◽  
...  

Most modeling and simulation (M&S) questions about cyber-physical systems (CPSs) require expert skills belonging to different scientific fields. The challenges are then to integrate each domain’s tools (formalism and simulation software) within the rigorous framework of M&S process. To answer this issue, we give the specifications of the Multi-agent Environment for Complex-SYstem CO-simulation (MECSYCO) middleware which enables to interconnect several pre-existing and heterogeneous M&S tools, so they can simulate a whole CPS together. The middleware performs the co-simulation in a parallel, decentralized, and distributable fashion thanks to its modular multi-agent architecture. In order to rigorously integrate tools that use different formalisms, the co-simulation engine of MECSYCO is based on the discrete event system specification (DEVS). The central idea of MECSYCO is to use a DEVS wrapping strategy to integrate each tool into the middleware. Thus, heterogeneous tools can be homogeneously co-simulated in the form of a DEVS system. By using DEVS, MECSYCO benefits from the numerous scientific works which have demonstrated the integrative power of this formalism and give crucial guidelines to rigorously design wrappers. We demonstrate that our discrete framework can integrate a vast amount of continuous M&S tools by wrapping the Functional Mockup Interface (FMI) standard. To this end, we take advantage of DEVS efforts of the literature (namely, the DEV&DESS hybrid formalism and Quantized State System (QSS) solvers) to design DEVS wrappers for Functional Mockup Unit (FMU) components. As a side-effect, this wrapping is not restricted to MECSYCO but can be applied in any DEVS-based platform. We evaluate MECSYCO with the proof of concept of a smart heating use case, where we co-simulate non-DEVS-centric M&S tools.

2011 ◽  
Vol 110-116 ◽  
pp. 4043-4049
Author(s):  
Soo Young Moon ◽  
Hyuk Park ◽  
Tae Ho Cho ◽  
Won Tae Kim

Most of existing frameworks for modeling and simulation of hybrid systems represent continuous behavior of systems using ordinary differential equations (ODEs). ODE models can be represented as discrete event system specification (DEVS) models through discretization and simulated in the DEVS simulation framework. However, in cyber-physical systems (CPS), it is difficult to represent the continuous behavior of a system using an ODE because it can have unknown, unpredictable variables. In that case, it is needed to predict the model’s next event time by inference to embed the model in a DEVS model. We propose the simulation framework in which a fuzzy inference module is added to each simulation model to determine its next event time. The proposed method enables simulation of hybrid system models which can or cannot be represented using an ODE.


Author(s):  
Ignace Djitog ◽  
Hamzat Olanrewaju Aliyu ◽  
Mamadou Kaba Traoré

This paper presents a multi-perspective approach to Modeling and Simulation (M&S) of Healthcare Systems (HS) such that different perspectives are defined and integrated together. The interactions between the isolated perspectives are done through dynamic update of models output-to-parameter integration during concurrent simulations. Most often, simulation-based studies of HS in the literature focus on specific problem like allocation of resources, disease propagation, and population dynamics that are studied with constant parameters from their respective experimental frames throughout the simulation. The proposed idea provides a closer representation of the real situation and helps to capture the interactions between seemingly independent concerns - and the effects of such interactions - in simulation results. The article provides a DEVS (Discrete Event System Specification)-based formalization of the loose integration of the different perspectives, an Object-Oriented framework for its realization and a case study as illustration and proof of concept.


2020 ◽  
Vol 51 ◽  
pp. 1200-1206
Author(s):  
Guolin Lyu ◽  
Alireza Fazlirad ◽  
Robert W. Brennan

In three specific model instantiations, this chapter demonstrates how URANOS can be applied to other research domains. The first instantiation, referred to as the body-mind continuum, addresses humans as holistic and spiritual beings embedded in their natural, informational and socio-cultural environments. The second instantiation provides a framework for integral thinking and designing based on the AQAL-model from K. Wilber (2007). The third instantiation addresses holistic and cognitive coordination processes in the context of multi-agent and cyber-physical systems. These three instantiations together build the core of our human-centered modeling approach. Each of them holds our generic system model at its core, but at the same time has its own specific extensions.


Author(s):  
Jean-François Santucci ◽  
Emmanuelle De Gentili ◽  
Ghjasippina Thury-Bouvet

In this chapter the authors present an exploration into the potential benefits of deploying structuralism analysis in the framework of human and social sciences using computer science modeling and simulation concepts and tools. They describe in detail in this chapter object oriented modeling and simulation software allowing the analysis of folktales. This software is based on the DEVS (Discrete Event System specification) formalism in order to both propose the modeling of a given myth issued from the oral literature of a given culture and the simulation of the corresponding myth transformations as described by Claude Levi Strauss when he dealt with mythical thought. The resulting software has been realized using the PythonDEVS kernel. The validation of the implemented software is performed on a set of folktales issued from corsican mythology and a set of myths from South and North America taken from Claude Levi Strauss’s Mythologiques book series.


Sign in / Sign up

Export Citation Format

Share Document