Twist-film gel spinning of large-diameter high-performance ultra-high molecular weight polyethylene monofilaments

2016 ◽  
Vol 87 (19) ◽  
pp. 2323-2336 ◽  
Author(s):  
Xudong Fang ◽  
Jing Shi ◽  
Tom Wyatt ◽  
Donggang Yao

A twist-film gel spinning process was developed for large-diameter high-performance ultra-high molecular weight polyethylene (UHMWPE) monofilaments. By using polybutene as a spin-solvent, film twisting was demonstrated to be an effective method for solvent removal; approximately 70% of solvent contained in the gel film can be removed simply by film twisting. This mechanical solvent removal process also makes conventional solvent extraction proceed significantly faster. Besides improved solvent extraction efficiency, large-diameter high-strength UHMWPE monofilaments (with diameters of about 80 µm and strength exceeding 3.2 GPa) can be produced with this process, which is difficult to achieve using conventional processes. The capability of making large-diameter high-strength monofilaments may allow new products of UHMWPE to be developed in a number of high-performance applications.

2021 ◽  
Vol 2103 (1) ◽  
pp. 012095
Author(s):  
L P Myasnikova ◽  
A K Borisov ◽  
Yu M Boiko ◽  
A P Borsenko ◽  
V F Drobot’ko ◽  
...  

Abstract The ultra-high-molecular-weight polyethylene reactor powders are widely used for the actively developing solvent-free method for producing high-strength high-modulus PE filaments, which includes the compaction and sintering of a powder followed by orientational hardening. To find an appropriate regime of the technological process, it is important to know how the nanostructure changes when transforming from a powder to a precursor for hardening. Nanocrystalline lamellae are characteristics of the powder structure. For the first time, the DSC technique was used to follow changes in the thickness distribution of lamellae in ultra-high-molecular-weight polyethylene reactor powder on its way to a precursor for orientation hardening. It was found that the percentage of thick (>15 nm) and thin (10 nm) lamellae in compacted samples and those sintered at temperatures lower than the melting temperature of PE (140°C) remains nearly the same. However, significant changes in the content of lamellae of different thicknesses were observed in the samples sintered at 145°C with subsequent cooling under different conditions. The influence of the lamellae thickness distribution in precursors on the mechanical characteristics of oriented filaments was discussed.


1986 ◽  
Vol 16 (2-3) ◽  
pp. 167-174 ◽  
Author(s):  
A. J. Pennings ◽  
R. J. van der Hooft ◽  
A. R. Postema ◽  
W. Hoogsteen ◽  
G. ten Brinke

2006 ◽  
Vol 101 (4) ◽  
pp. 2619-2626 ◽  
Author(s):  
Atsuhiko Yamanaka ◽  
Yoshinobu Izumi ◽  
Tooru Kitagawa ◽  
Takaya Terada ◽  
Hideki Sugihara ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document