Design, preparation, and characterization of auxetic weft backed weave fabrics based on Miura origami structure

2021 ◽  
pp. 004051752110505
Author(s):  
Qiaoli Xu ◽  
Longxin Gu ◽  
Gui Liu ◽  
Zhuoran Liu ◽  
Dongdong Lu ◽  
...  

The metamaterials with negative Poisson’s ratio are called auxetic materials, which as a branch of metamaterials has drawn a lot of attention in many areas. Existing auxetic knitting textiles combine flexibility and auxeticity, however the loose structure has been a main disadvantage for its application. In this study, we fabricated Miura origami structure fabrics by weaving technology in order to acquire more stable auxetic textiles. The results show that using the combination of fabric structure type and elastic yarns, an origami structure can be realized in a jacquard loom. In the Miura origami structure, the crease pattern can be separated into three parts, unfolding areas, convex areas, and concave areas. One warp system and two weft systems are compounded together, in which a weft backed weave is used to get elastic floats in the convex and concave areas, and to make the fabrics bend to the concave side. The physical map showed that the fabrics had a clear Miura origami structure and the unfolding areas were flat and even. On the basis of the designed geometric pattern, weft backed weaves can be used to construct different folded areas, spandex wrapped PET (Polyester) and inelastic PET are selected as two weft systems for weaving. Meanwhile, the Miura origami fabrics exhibit distinct in-plane negative Poisson’s ratio and out-of-plane positive Poisson’s ratio. Apart from the Miura origami structure, other origami and paper-cut structures can be realized using this method, and these special auxetic textiles have potential in protective cloths, ornamented textiles, wearable devices, and flexible sensors.

2021 ◽  
Author(s):  
Xikui Ma ◽  
Jian Liu ◽  
Yingcai Fan ◽  
Weifeng Li ◽  
Jifan Hu ◽  
...  

Two-dimensional (2D) auxetic materials with exceptional negative Poisson’s ratios (NPR) are drawing increasing interest due to the potentials in medicine, fasteners, tougher composites and many other applications. Improving the auxetic...


2016 ◽  
Vol 86 (20) ◽  
pp. 2151-2157 ◽  
Author(s):  
Pibo Ma ◽  
Yuping Chang ◽  
Gaoming Jiang

In this paper, the design, manufacturing and characterization of two-dimensional warp-knitted textiles with auxetic performance is reported. Four warp-knitted structures based on a rotational hexagonal structure are produced, and these structures can lead to a negative Poisson’s ratio mathematically. The testing results have confirmed that the knitting structure of the front bar, as well as let-off values of the front bar’s chain parts, has a great effect, and auxetic properties of the warp-knitted textiles have a complicated relationship with the rotation angle. These novel structures can expand the applied area of auxetic structures.


2017 ◽  
Vol 88 (18) ◽  
pp. 2076-2092 ◽  
Author(s):  
Adeel Zulifqar ◽  
Tao Hua ◽  
Hong Hu

Fabrics with zero or negative Poisson’s ratio are referred as auxetic fabrics, which have the unusual property of lateral expansion or zero expansion upon stretch. The use of conventional materials and machinery to produce auxetic fabrics has gained the interest of researchers in recent years. However, this approach is limited to knitted fabrics only. The development of auxetic fabric using conventional yarns and weaving technology is a research area that is still unaddressed. This paper reports a study on the development of a novel class of stretchable auxetic woven fabrics by using conventional yarns and weaving machinery. The phenomenon of differential shrinkage was successfully employed to realize auxetic geometries capable of inducing auxetic behavior in woven fabrics, and a series of auxetic woven fabrics were fabricated with elastic and non-elastic yarns and a dobby machine. The uni-axial tensile tests showed that auxetic woven fabrics developed exhibited zero or negative Poisson’s ratio over a wide range of longitudinal strain.


Author(s):  
Chulho Yang ◽  
Hitesh D. Vora ◽  
Young Bae Chang

Auxetic materials, known as materials with negative Poisson’s ratio (NPR), have many promising application areas. However, there are only few natural and man-made materials such as certain living bone tissues, certain rocks and minerals, polymeric honeycombs, microporous polytetrafluoroethylene (PTFE), foams, and carbon-fiber-reinforced epoxy composite laminate panels that possess this property. In recent years, various auxetic material structures have been designed and fabricated for diverse applications that utilized normal materials which follow Hooke’s law but still show the NPR properties. One of the applications is body protection pads that are comfortable to wear and effective in protecting body parts by reducing impact force and preventing injuries in high-risk individuals such as elderly people, industry workers, law enforcement and military personnel, and sports players. It is important to develop new body protectors that best combine each individual’s requirements for wearing comfort (flexible, light-weight), ease of fitting (customized), ensured protection, and cost-effectiveness. The protection pad would be made from multilayer materials and adaptive structures to achieve unique multifunctional properties such as high hardness, impact toughness, light weight, and excellent shock absorption suitable for the needs. This paper reports an integrated theoretical, computational (finite element analysis), and experimental investigation conducted for typical auxetic polymeric materials that exhibit negative Poisson’s ratio (NPR) effect. Parametric 3D CAD models of auxetic polymeric structures such as re-entrant hexagonal cells and arrowhead were developed. Then, key structural characteristics of protectors were evaluated through static analyses of FEA models. In addition, impact/shock analyses were conducted through dynamic analyses of FEA models to validate the results obtained from the static analyses. Particularly, an advanced additive manufacturing (3D printing) technique was used to build prototypes of the auxetic polymeric structures. Specifically, three different materials typically used for FDM (Fused Deposition Modeling) technology such as Polylactic acid (PLA) and thermoplastic polyurethane (TPU) material (NinjaFlex® and SemiFlex®) were used for different stiffness and shock-absorption performances. The 3D printed prototypes were then tested and the results were compared with the computational prediction. The results showed that the auxetic material can be effective for body protection pads. Each structure and material had unique structural properties such as stiffness, Poisson’s ratio, and efficiency in shock absorption. Particularly, auxtetic structures showed better shock absorption performance than non-auxetic ones. The mechanism for ideal input force distribution or shunting could be suggested for designing protectors using various shapes, thicknesses, and materials of auxetic materials to reduce the risk of injury.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Mariam Mir ◽  
Murtaza Najabat Ali ◽  
Javaria Sami ◽  
Umar Ansari

One of the important mechanical properties of materials is Poisson’s ratio, which is positive for most of the materials. However, certain materials exhibit “auxetic” properties; that is, they have a negative Poisson’s ratio. Thus auxetic and non-auxetic materials exhibit different deformation mechanisms. A specific microscopic structure in the auxetic materials is important for maintaining a negative Poisson’s ratio. Based on their distinct nature auxetic materials execute certain unique properties in contrast to other materials, which are reviewed in this paper. Thus auxetic materials have important applications in the biomedical field which are also a part of this review article. Many auxetic materials have been discovered, fabricated, and synthesized which differ on the basis of structure, scale and deformation mechanism. The different types of auxetic materials such as auxetic cellular solids, microscopic auxetic polymers, molecular auxetic materials, and auxetic composites have been reviewed comprehensively in this paper. Modeling of auxetic structures is of considerable importance and needs appropriate stress strain configurations; thus different aspects of auxetic modeling have also been reviewed. Packing parameters and relative densities are of prime importance in this regard. This review would thus help the researchers in determining and deciding the various aspects of auxetic nature for their products.


Nanoscale ◽  
2019 ◽  
Vol 11 (24) ◽  
pp. 11413-11428 ◽  
Author(s):  
Rui Peng ◽  
Yandong Ma ◽  
Qian Wu ◽  
Baibiao Huang ◽  
Ying Dai

2D auxetic materials with an intrinsic negative Poisson's ratio hold great potential in nanodevices.


Author(s):  
J. C. Matheny ◽  
L. M. Berhan

In theory, a negative Poisson’s ratio (i.e. auxetic) material has improved hardness, impact resistance, fracture toughness, and shear modulus over one with a positive Poisson’s ratio and comparable stiffness. These enhanced properties make them attractive candidates for a wide range of applications, including ones in the biomedical industry. Over the past two decades there has been increasing interest in auxetic materials leading to the discovery and development of new auxetic materials at the micro- and macro-scales. It has been reported in the literature that some human trabecular bone is auxetic; however verification of this claim and measurement of the Poisson’s ratio of biological materials remains a challenge. This research need is the motivation for the current work. The central research objective of this project is to develop an approach to gain fundamental insight into the geometric characteristics of auxetic open cell materials by studying the underpinning mechanics behind the transition from positive to negative Poisson’s ratio that takes place when open-cell foam is compressed and heat treated. The approach involves detailed image analysis and finite element modeling of the microstructure of polyurethane foam, which is commonly used as a test material to model the structure of human cancellous bone. By studying both conventional and auxetic foam, and the process by which conventional foams are transformed to auxetic, we seek to identify the critical features of auxetic open-cell structures. The results will lead to a better understanding of auxetic cellular materials in general, and will be used to develop a framework for use in determining the mechanical properties and potential auxeticity of human trabecular bone and to aid in the design of synthetic auxetic biomaterials. In this paper we report on preliminary results of our modeling efforts.


2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744088
Author(s):  
Yiyi Zhou ◽  
Lianmen Chen

Auxetics are materials showing a negative Poisson’s ratio. Early research found several categories of auxetic materials in the chemical field. Later research identified the fundamental mechanism generating this behavior is rotation; a variety of two-dimensional auxetic material have been generated accordingly. Nevertheless, the successful example of three-dimensional auxetic material is still rare. This paper introduces a new design of three-dimensional periodic cellular auxetic material based on geometrical and mechanical methodology. The projections of the optimized periodic modules in two horizontal directions are geometrically same with auxetic hexahedral poem, so that the optimized periodic material can perform auxetic in both two horizontal directions under vertical compression. Parametric model is simulated to prove the design.


Sign in / Sign up

Export Citation Format

Share Document