cellular solids
Recently Published Documents


TOTAL DOCUMENTS

263
(FIVE YEARS 33)

H-INDEX

39
(FIVE YEARS 3)

Author(s):  
Karl J Niklas ◽  
Frank W Telewski

Abstract Abiotic–biotic interactions have shaped organic evolution since life first began. Abiotic factors influence growth, survival, and reproductive success, whereas biotic responses to abiotic factors have changed the physical environment (and indeed created new environments). This reciprocity is well illustrated by land plants who begin and end their existence in the same location while growing in size over the course of years or even millennia, during which environment factors change over many orders of magnitude. A biomechanical, ecological, and evolutionary perspective reveals that plants are (i) composed of materials (cells and tissues) that function as cellular solids (i.e. materials composed of one or more solid and fluid phases); (ii) that have evolved greater rigidity (as a consequence of chemical and structural changes in their solid phases); (iii) allowing for increases in body size and (iv) permitting acclimation to more physiologically and ecologically diverse and challenging habitats; which (v) have profoundly altered biotic as well as abiotic environmental factors (e.g. the creation of soils, carbon sequestration, and water cycles). A critical component of this evolutionary innovation is the extent to which mechanical perturbations have shaped plant form and function and how form and function have shaped ecological dynamics over the course of evolution.


2021 ◽  
Vol 2 (3) ◽  
pp. 100661
Author(s):  
Hao Wu ◽  
Yu-Kun Chiu ◽  
Jih-Chiang Tsai ◽  
Cheng-Ming Chuong ◽  
Wen-Tau Juan

2021 ◽  
pp. 2100646
Author(s):  
Oyindamola Rahman ◽  
Kazi Zahir Uddin ◽  
Jeeva Muthulingam ◽  
George Youssef ◽  
Chen Shen ◽  
...  
Keyword(s):  

2021 ◽  
Vol 2 (2) ◽  
pp. 331-355
Author(s):  
Victor E. L. Gasparetto ◽  
Mostafa S. A. ElSayed

This paper investigates the macroscopic anisotropic behavior of periodic cellular solids with rigid-jointed microscopic truss-like architecture. A theoretical matrix-based procedure is presented to calculate the homogenized stiffness and strength properties of the material which is validated experimentally. The procedure consists of four main steps, namely, (i) using classical structural analysis to determine the stiffness properties of a lattice unit cell, (ii) employing the Bloch’s theorem to generate the irreducible representation of the infinite lattice, (iii) resorting to the Cauchy–Born Hypothesis to express the microscopic nodal forces and deformations in terms of a homogeneous macroscopic strain field applied to the lattice, and (iv) employing the Hill–Mandel homogenization principle to obtain the macro-stiffness properties of the lattice topologies. The presented model is used to investigate the anisotropic mechanical behavior of 13 2D periodic cellular solids. The results are documented in three set of charts that show (i) the change of the Young and Shear moduli of the material with respect to their relative density; (ii) the contribution of the bending stiffness of microscopic cell elements to the homogenized macroscopic stiffness of the material; and (iii) polar diagrams of the change of the elastic moduli of the cellular solid in response to direction of macroscopic loading. The three set of charts can be used for design purposes in assemblies involving the honeycomb structures as it may help in selecting the best lattice topology for a given functional stiffness and strength requirement. The theoretical model was experimentally validated by means of tensile tests performed in additively manufactured Lattice Material (LM) specimens, achieving good agreement between the results. It was observed that the model of rigid-joined LM (RJLM) predicts the homogenized mechanical properties of the LM with higher accuracy compared to those predicted by pin-jointed models.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 725
Author(s):  
Vitor Hugo Carneiro ◽  
Hélder Puga ◽  
José Meireles

Aluminum-based cellular solids are promising lightweight structural materials considering their high specific strength and vibration damping, being potential candidates for future railway vehicles with enhanced riding comfort and low fuel consumption. The filling of these lattices with polymer-based (i.e., polyurethane) foams may further improve the overall vibration/noise-damping without significantly increasing their density. This study explores the dynamic (i.e., frequency response) and acoustic properties of unfilled and polyurethane-filled aluminum cellular solids to characterize their behavior and explore their benefits in terms of vibration and noise-damping. It is shown that polyurethane filling can increase the vibration damping and transmission loss, especially if the infiltration process uses flexible foams. Considering sound reflection, however, it is shown that polyurethane filled samples (0.27–0.30 at 300 Hz) tend to display lower values of sound absorption coefficient relatively to unfilled samples (0.75 at 600 Hz), is this attributed to a reduction in overall porosity, tortuosity and flow resistivity. Foam-filled samples (43–44 dB at 700–1200 Hz) were shown to be more suitable to reduce sound transmission rather than reflection than unfilled samples (21 dB at 700 Hz). It was shown that the morphology of these cellular solids might be optimized depending on the desired application: (i) unfilled aluminum cellular solids are appropriate to mitigate internal noises due to their high sound absorption coefficient; and (ii) PU filled cellular solids are appropriate to prevent exterior noises and vibration damping due to their high transmission loss in a wide range of frequencies and vibration damping.


2021 ◽  
Vol 148 ◽  
pp. 103767
Author(s):  
Tomáš Fíla ◽  
Petr Koudelka ◽  
Jan Falta ◽  
Petr Zlámal ◽  
Václav Rada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document