human cancellous bone
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 21)

H-INDEX

39
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
pp. 88
Author(s):  
Kevin Knappe ◽  
Rudi G. Bitsch ◽  
Mareike Schonhoff ◽  
Tilman Walker ◽  
Tobias Renkawitz ◽  
...  

In cemented joint arthroplasty, state-of-the-art cementing techniques include high-pressure pulsatile saline lavage prior to cementation. Even with its outstanding importance in cementation, there are surprisingly few studies regarding the physical parameters that define pulsatile lavage systems. To investigate the parameters of impact pressure, flow rate, frequency and the cleaning effect in cancellous bone, we established a standardized laboratory model. Standardized fat-filled carbon foam specimens representing human cancellous bone were cleaned with three different high-pressure pulsatile lavage systems. Via CT scans before and after cleaning, the cleaning effect was evaluated. All systems showed a cleaning depth of at least 3.0 mm and therefore can be generally recommended to clean cancellous bone in cemented joint arthroplasty. When comparing the three lavage systems, the study showed significant differences regarding cleaning depths and volume, with one system being superior to its peer systems. Regarding the physical parameters, high impact pressure in combination with high flow rate and longer distance to the flushed object seems to be the best combination to improve the cleaning of cancellous bone and therefore increase the chances of a deeper cement penetration that is required in cemented joint arthroplasty. In summary, this study provides the first standardized comparison of different lavage systems and thus gives initial guidance on how to optimally prepare cancellous bone for cemented joint arthroplasty.


Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1015
Author(s):  
Bruno Zwingenberger ◽  
Corina Vater ◽  
Roland L. Bell ◽  
Julia Bolte ◽  
Elisabeth Mehnert ◽  
...  

The purpose of this study was to investigate, in vitro and in vivo, the suitability of chitosan (CHS) scaffolds produced by the net-shape-nonwoven (NSN) technology, for use as bone graft substitutes in a critical-size femoral bone defect in rats. For in vitro investigations, scaffolds made of CHS, mineralized collagen (MCM), or human cancellous bone allograft (CBA) were seeded with human telomerase-immortalized mesenchymal stromal cells (hTERT-MSC), incubated for 14 days, and thereafter evaluated for proliferation and osteogenic differentiation. In vivo, CHS, MCM and CBA scaffolds were implanted into 5 mm critical-size femoral bone defects in rats. After 12 weeks, the volume of newly formed bone was determined by microcomputed tomography (µCT), while the degree of defect healing, as well as vascularization and the number of osteoblasts and osteoclasts, was evaluated histologically. In vitro, CHS scaffolds showed significantly higher osteogenic properties, whereas treatment with CHS, in vivo, led to a lower grade of bone-healing compared to CBA and MCM. While chitosan offers a completely new field of scaffold production by fibers, these scaffolds will have to be improved in the future, regarding mechanical stability and osteoconductivity.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2718
Author(s):  
Po-Kai Juan ◽  
Fang-Yu Fan ◽  
Wei-Chun Lin ◽  
Pei-Bang Liao ◽  
Chiung-Fang Huang ◽  
...  

This study applied poly-ε-caprolactone (PCL), a biomedical ceramic powder as an additive (nano-hydroxyapatite (nHA) or β-tricalcium diphosphate (β-TCP)), and sodium chloride (NaCl) and ammonium bicarbonate ((NH4)HCO3) as porogens; these stuffs were used as scaffold materials. An improved solvent-casting/particulate-leaching method was utilized to fabricate 3D porous scaffolds. In this study we examined the physical properties (elastic modulus, porosity, and contact angle) and degradation properties (weight loss and pH value) of the 3D porous scaffolds. Both nHA and β-TCP improved the mechanical properties (elastic modulus) of the 3D porous scaffolds. The elastic modulus (0.15~1.865 GPa) of the various composite scaffolds matched that of human cancellous bone (0.1~4.5 GPa). Osteoblast-like (MG63) cells were cultured, a microculture tetrazolium test (MTT) was conducted and alkaline phosphatase (ALP) activity of the 3D porous scaffolds was determined. Experimental results indicated that both nHA and β-TCP powder improved the hydrophilic properties of the scaffolds. The degradation rate of the scaffolds was accelerated by adding nHA or β-TCP. The MTT and ALP activity tests indicated that the scaffolds with a high ratio of nHA or β-TCP had excellent properties of in vitro biocompatibility (cell attachment and proliferation).


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 941
Author(s):  
Mona Sari ◽  
Nicholas Kristianto ◽  
Chotimah ◽  
Ika Ana ◽  
Yusril Yusuf

In this work, carbonated hydroxyapatite (CHA) based on abalone mussel shells (Haliotis asinina) is synthesized using the co-precipitation method. The synthesized CHA was mixed with honeycomb (HCB) 40 wt.% for the scaffold fabrication process. CHA and scaffold CHA/HCB 40 wt.% were used for coating a Titanium (Ti) alloy using the electrophoretic deposition dip coating (EP2D) method with immersion times of 10, 20, and 30 min. The synthesized B-type CHA with a stirring time of 45 min could have lower transmittance values and smaller crystallite size. Energy dispersive X-ray spectroscopy (EDS) showed that the Ca/P molar ratio was 1.79. The scaffold CHA/HCB 40 wt.% had macropore size, micropore size, and porosity of 102.02 ± 9.88 μm, 1.08 ± 0.086 μm, and 66.36%, respectively, and therefore it can also be applied in the coating process for bone implant applications due to the potential scaffold for bone growth. Thus, it has the potential for coating on Ti alloy applications. In this study, the compressive strength for all immersion time variations was about 54–83 MPa. The average compression strengths of human cancellous bone were about 0.2–80 MPa. The thickness obtained was in accordance with the thickness parameters required for a coating of 50–200 μm.


2021 ◽  
Vol 11 (13) ◽  
pp. 6103
Author(s):  
Kevin Knappe ◽  
Christian Stadler ◽  
Moritz Innmann ◽  
Mareike Schonhoff ◽  
Tobias Gotterbarm ◽  
...  

Cemented implant fixation in total joint arthroplasty has been proven to be safe and reliable with good long-term results. However, aseptic loosening is one of the main reasons for revision, potentially caused by poor cementation with low penetration depth in the cancellous bone. Aim of this prospective laboratory study was, to compare impact pressure and cleaning effects of pulsatile saline lavage to novel carbon dioxide lavage in a standardized carbon foam setup, to determine whether or not additional use of carbon dioxide lavage has any impact on cleaning volume or cleaning depth in cancellous bone. Carbon specimens simulating human cancellous bone were filled with industrial grease and then underwent a standardized cleaning procedure. Specimens underwent computed tomography pre- and post-cleaning. Regarding the impact pressure, isolated carbon dioxide lavage showed significant lower pressure compared to pulsatile saline lavage. Even though the combination of carbon dioxide lavage and pulsatile saline lavage had a positive cleaning effect compared to the isolated use of pulsatile saline lavage or carbon dioxide lavage, this was not significant in terms of cleaning volume or cleaning depth.


2021 ◽  
pp. 153537022110190
Author(s):  
Deboleena Kanjilal ◽  
Christopher Grieg ◽  
Maya Deza Culbertson ◽  
Sheldon S Lin ◽  
Michael Vives ◽  
...  

Bone allograft is widely used to treat large bone defects or complex fractures. However, processing methods can significantly compromise allograft osteogenic activity. Adjuvants that can restore the osteogenic activity of processed allograft should improve clinical outcomes. In this study, zinc was tested as an adjuvant to increase the osteogenic activity of human allograft in a Rag2 null rat femoral defect model. Femoral defects were treated with human demineralized bone matrix (DBM) mixed with carboxy methyl cellulose containing ZnCl2 (0, 75, 150, 300 µg) or Zn stearate (347 µg). Rat femur defects treated with DBM-ZnCl2 (75 µg) and DBM-Zn stearate (347 µg) showed increased calcified tissue in the defect site compared to DBM alone. Radiograph scoring and µCT (microcomputed tomography) analysis showed an increased amount of bone formation at the defects treated with DBM-Zn stearate. Use of zinc as an adjuvant was also tested using human cancellous bone chips. The bone chips were soaked in ZnCl2 solutions before being added to defect sites. Zn adsorbed onto the chips in a time- and concentration-dependent manner. Rat femur defects treated with Zn-bound bone chips had more new bone in the defects based on µCT and histomorphometric analyses. The results indicate that zinc supplementation of human bone allograft improves allograft osteogenic activity in the rat femur defect model.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247764
Author(s):  
Chenglong Shi ◽  
Nana Lu ◽  
Yaru Qin ◽  
Mingdi Liu ◽  
Hongxia Li ◽  
...  

In this paper, we take the elliptical pore structure which is similar to the microstructure of cancellous bone as the research object, four groups of bone scaffolds were designed from the perspective of pore size, porosity and pore distribution. The size of the all scaffolds were uniformly designed as 10 × 10 × 12 mm. Four groups of model samples were prepared by selective laser melting (SLM) and Ti6Al4V materials. The statics performance of the scaffolds was comprehensively evaluated by mechanical compression simulation and mechanical compression test, the manufacturing error of the scaffold samples were evaluated by scanning electron microscope (SEM), and the permeability of the scaffolds were predicted and evaluated by simulation analysis of computational fluid dynamics (CFD). The results show that the different distribution of porosity, pore size and pores of the elliptical scaffold have a certain influence on the mechanical properties and permeability of the scaffold, and the reasonable size and angle distribution of the elliptical pore can match the mechanical properties and permeability of the elliptical pore scaffold with human cancellous bone, which has great potential for research and application in the field of artificial bone scaffold.


2021 ◽  
Vol 82 ◽  
pp. 105280
Author(s):  
Benjamin Fischer ◽  
Alexander Hofmann ◽  
Sascha Kurz ◽  
Melanie Edel ◽  
Dirk Jörg Zajonz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document