Cotton Fiber Strength Study

1943 ◽  
Vol 13 (9) ◽  
pp. 17-19 ◽  
Keyword(s):  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Baneswar Sarker ◽  
Shankar Chakraborty

Purpose Like all other natural fibers, the physical properties of cotton also vary owing to changes in the related genetic and environmental factors, which ultimately affect both the mechanics involved in yarn spinning and the quality of the yarn produced. However, information is lacking about the degree of influence that those properties impart on the spinnability of cotton fiber and the strength of the final yarn. This paper aims to discuss this issue. Design/methodology/approach This paper proposes the application of discriminant analysis as a multivariate regression tool to develop the causal relationships between six cotton fiber properties, i.e. fiber strength (FS), fiber fineness (FF), upper half mean length (UHML), uniformity index (UI), reflectance degree and yellowness and spinning consistency index (SCI) and yarn strength (YS) along with the determination of the respective contributive roles of those fiber properties on the considered dependent variables. Findings Based on the developed discriminant function, it can be revealed that FS, UI, FF and reflectance degree are responsible for higher YS. On the other hand, with increasing values of UHML and fiber yellowness, YS would tend to decrease. Similarly, SCI would increase with higher values of FS, UHML, UI and reflectance degree, and its value would decrease with increasing FF and yellowness. Originality/value The discriminant functions can effectively envisage the contributive role of each of the considered cotton fiber properties on SCI and YS. The discriminant analysis can also be adopted as an efficient tool for investigating the effects of various physical properties of other natural fibers on the corresponding yarn characteristics.


1988 ◽  
Vol 58 (8) ◽  
pp. 433-438 ◽  
Author(s):  
J. K. Dever ◽  
J. R. Gannaway ◽  
R. V. Baker

Seven sources of cotton representing a wide range of fiber properties were roller ginned, saw ginned, or saw ginned plus processed through tandem saw lint cleaners or through an aggressive carding-type cleaner (Cottonmaster1). Lint cleaner induced changes in fiber length and nep count were compared to fiber property measurements from roller ginned samples. Fiber length deterioration from saw ginning was negatively correlated with fiber strength. Fiber breakage in lint cleaning was positively correlated with fiber fineness. Resistance to fiber length damage in ginning was explained best by fiber strength and fineness, or an estimate of individual fiber strength. Initial and final nep level were related to fineness, nonlint content, and upper quartile length, but an increase in neps due to lint cleaning had no significant relationship to fiber properties.


2020 ◽  
Author(s):  
David D. Fang ◽  
Linghe Zeng ◽  
Gregory N. Thyssen ◽  
Christopher D. Delhom ◽  
Efrem Bechere ◽  
...  
Keyword(s):  

2011 ◽  
Author(s):  
Yongliang Liu ◽  
Gary Gamble ◽  
Devron Thibodeaux
Keyword(s):  

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Qiang Ma ◽  
Nuohan Wang ◽  
Pengbo Hao ◽  
Huiru Sun ◽  
Congcong Wang ◽  
...  

Abstract Background Cotton fiber length and strength are both key traits of fiber quality, and fiber strength (FS) is tightly correlated with secondary cell wall (SCW) biosynthesis. The three-amino-acid-loop-extension (TALE) superclass homeoproteins are involved in regulating diverse biological processes in plants, and some TALE members has been identified to play a key role in regulating SCW formation. However, little is known about the functions of TALE members in cotton (Gossypium spp.). Results In the present study, based on gene homology, 46, 47, 88 and 94 TALE superfamily genes were identified in G. arboreum, G. raimondii, G. barbadense and G. hirsutum, respectively. Phylogenetic and evolutionary analysis showed the evolutionary conservation of two cotton TALE families (including BEL1-like and KNOX families). Gene structure analysis also indicated the conservation of GhTALE members under selection. The analysis of promoter cis-elements and expression patterns suggested potential transcriptional regulation functions in fiber SCW biosynthesis and responses to some phytohormones for GhTALE proteins. Genome-wide analysis of colocalization of TALE transcription factors with SCW-related QTLs revealed that some BEL1-like genes and KNAT7 homologs may participate in the regulation of cotton fiber strength formation. Overexpression of GhKNAT7-A03 and GhBLH6-A13 significantly inhibited the synthesis of lignocellulose in interfascicular fibers of Arabidopsis. Yeast two-hybrid (Y2H) experiments showed extensive heteromeric interactions between GhKNAT7 homologs and some GhBEL1-like proteins. Yeast one-hybrid (Y1H) experiments identified the upstream GhMYB46 binding sites in the promoter region of GhTALE members and defined the downstream genes that can be directly bound and regulated by GhTALE heterodimers. Conclusion We comprehensively identified TALE superfamily genes in cotton. Some GhTALE members are predominantly expressed during the cotton fiber SCW thicking stage, and may genetically correlated with the formation of FS. Class II KNOX member GhKNAT7 can interact with some GhBEL1-like members to form the heterodimers to regulate the downstream targets, and this regulatory relationship is partially conserved with Arabidopsis. In summary, this study provides important clues for further elucidating the functions of TALE genes in regulating cotton growth and development, especially in the fiber SCW biosynthesis network, and it also contributes genetic resources to the improvement of cotton fiber quality.


1956 ◽  
Vol 26 (4) ◽  
pp. 296-302 ◽  
Author(s):  
Louis A. Fiori ◽  
John J. Brown ◽  
Jack E. Sands
Keyword(s):  

Crop Science ◽  
1994 ◽  
Vol 34 (1) ◽  
pp. 147-151 ◽  
Author(s):  
C. R. Benedict ◽  
R. J. Kohel ◽  
G. M. Jividen

1975 ◽  
Vol 45 (4) ◽  
pp. 356-357 ◽  
Author(s):  
Jacques J. Hebert
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document