Dynamic Behavior of a Nonlinear Viscoelastic Cylindrical Shell Subjected to Internal Pressure

1996 ◽  
Vol 28 (1) ◽  
pp. 34-62
Author(s):  
D. M. Darwish ◽  
John R. Cannon
2017 ◽  
Vol 139 (2) ◽  
Author(s):  
Qi Dong ◽  
Q. M. Li ◽  
Jinyang Zheng

Strain growth is a phenomenon observed in the elastic response of containment vessels subjected to internal blast loading. The local dynamic response of a containment vessel may become larger in a later stage than its response in the earlier stage. In order to understand the possible mechanisms of the strain growth phenomenon in a cylindrical vessel, dynamic elastic responses of a finite-length cylindrical shell with different boundary conditions subjected to internal pressure pulse are studied by finite-element simulation using LS-DYNA. It is found that the strain growth in a finite-length cylindrical shell with sliding–sliding boundary conditions is caused by nonlinear modal coupling. Strain growth in a finite-length cylindrical shell with free–free or simply supported boundary conditions is primarily caused by the linear modal superposition, possibly enhanced by the nonlinear modal coupling. The understanding of these strain growth mechanisms can guide the design of cylindrical containment vessels.


Author(s):  
James Lu ◽  
Barry Millet ◽  
Kenneth Kirkpatrick ◽  
Bryan Mosher

Abstract Design equation (4.3.1) for the minimum required thickness of a cylindrical shell subjected to internal pressure in Part 4 “design by rule (DBR)” of the ASME Boiler and Pressure Vessel Code, Section VIII, Division 2 [1] is based on the Tresca Yield Criterion, while design by analysis (DBA) in Part 5 of the Division 2 Code is based on the von Mises Yield Criterion. According to ASME PTB-1 “ASME Section VIII – Division 2 Criteria and Commentary”, the difference in results is about 15% due to use of the two different criteria. Although the von Mises Yield Criterion will result in a shell wall thickness less than that from Tresca Yield Criterion, Part 4 (DBR) of ASME Division 2 adopts the latter for a more convenient design equation. To use the von Mises Criterion in lieu of Tresca to reduce shell wall thickness, one has to follow DBA rules in Part 5 of Division 2, which typically requires detailed numeric analysis performed by experienced stress analysts. This paper proposes a simple design equation for the minimum required thickness of a cylindrical shell subjected to internal pressure based on the von Mises Yield Criterion. The equation is suitable for both thin and thick cylindrical shells. Calculation results from the equation are validated by results from limit load analyses in accordance with Part 5 of ASME Division 2 Code.


2020 ◽  
Vol 12 (4) ◽  
pp. 168781402091611 ◽  
Author(s):  
Jari Hyvärinen ◽  
Matts Karlsson ◽  
Lin Zhou

Fatigue failure of a hydraulic hose systems, caused by violent vibrations, has become a critical factor creating operational and maintenance cost for the end user of rock drill equipment. Similar behavior is also appearing in, for example, forestry machines. Hoses are used as parts of the energy feeding system in machines such as the ones use for mining and civil construction operations. This work aims to create an understanding of the dynamic behavior of a selected hydraulic hose. The numerical modeling approach selected includes a boundary element method approach in the fluid-elastic analysis of the dynamics of a pressurized hose with conveying fluid. Experimental modal analysis was used to validate the numerical model. Pre-tension and pressure-induced tension were monitored with an in-house-developed strain gauge–based load cell. The analysis and experiments show that a complex coupling, of pure structural bending modes, appears when the hose is subjected to internal flow. Some of the modeshapes show a circular motion of the hose cross sections. As shown in this article, these coupled modes become increasingly sensitive to external or internal excitation with increasing flow rate. To illustrate the strength of the proposed approach, the second part of the work in this article presents a parametric study of hose dynamics for hoses with typical dimensions used in industrial applications. This investigation of how different parameters influence the dynamic characteristics of hydraulic hoses shows, for example, that hose end-support stiffness has a large impact on the stability and dynamic behavior of the hose. A soft support tends to create a static instability–type behavior where the lowest frequency mode frequency decreases to levels close to zero with increasing flow speed. Pre-tension of the hose has a stabilizing effect on the hose dynamics. In the case when the internal pressure of the hydraulic hose does not generate tension of the hose, then the increase or decrease in the internal pressure has limited influence on the hose dynamics: this is at least a conclusion valid in the investigated 100–210 bar pressure range. In addition, a smaller diameter hose is more sensitive than a larger diameter hose, and this is valid as long as the pre-tension is high enough to maintain static stability in the entire flow rate range.


Sign in / Sign up

Export Citation Format

Share Document