scholarly journals Study of concept for hydraulic hose dynamics investigations to enable understanding of the hose fluid–structure interaction behavior

2020 ◽  
Vol 12 (4) ◽  
pp. 168781402091611 ◽  
Author(s):  
Jari Hyvärinen ◽  
Matts Karlsson ◽  
Lin Zhou

Fatigue failure of a hydraulic hose systems, caused by violent vibrations, has become a critical factor creating operational and maintenance cost for the end user of rock drill equipment. Similar behavior is also appearing in, for example, forestry machines. Hoses are used as parts of the energy feeding system in machines such as the ones use for mining and civil construction operations. This work aims to create an understanding of the dynamic behavior of a selected hydraulic hose. The numerical modeling approach selected includes a boundary element method approach in the fluid-elastic analysis of the dynamics of a pressurized hose with conveying fluid. Experimental modal analysis was used to validate the numerical model. Pre-tension and pressure-induced tension were monitored with an in-house-developed strain gauge–based load cell. The analysis and experiments show that a complex coupling, of pure structural bending modes, appears when the hose is subjected to internal flow. Some of the modeshapes show a circular motion of the hose cross sections. As shown in this article, these coupled modes become increasingly sensitive to external or internal excitation with increasing flow rate. To illustrate the strength of the proposed approach, the second part of the work in this article presents a parametric study of hose dynamics for hoses with typical dimensions used in industrial applications. This investigation of how different parameters influence the dynamic characteristics of hydraulic hoses shows, for example, that hose end-support stiffness has a large impact on the stability and dynamic behavior of the hose. A soft support tends to create a static instability–type behavior where the lowest frequency mode frequency decreases to levels close to zero with increasing flow speed. Pre-tension of the hose has a stabilizing effect on the hose dynamics. In the case when the internal pressure of the hydraulic hose does not generate tension of the hose, then the increase or decrease in the internal pressure has limited influence on the hose dynamics: this is at least a conclusion valid in the investigated 100–210 bar pressure range. In addition, a smaller diameter hose is more sensitive than a larger diameter hose, and this is valid as long as the pre-tension is high enough to maintain static stability in the entire flow rate range.

Author(s):  
Jean F. B. Machado ◽  
Cezar O. R. Negra˜o ◽  
Silvio L. M. Junqueira ◽  
Ricardo A. Mazza ◽  
Rigoberto E. M. Morales

Sudden changes of flow temperature along a tube are common in industrial applications. One may suggest those changes can be related to the flow rate. The current work presents a feasibility analysis to evaluate the mass flow rate by measuring changes of temperature at two positions along a tube wall separated by a known distance. The ratio of the distance and the time to change the temperature at the two points may be related to the average flow speed. This is a convection-conduction heat transfer phenomenon at the flow and tube wall. This conjugated heat transfer is modeled by the energy conservation equation that is solved numerically. The study identifies the ranges of parameters, such as, Reynolds and Biot numbers, wall thickness, etc., on which the technique can be applied. The model results are compared to an analytical solution and preliminary experimental results.


2020 ◽  
Vol 17 (2) ◽  
pp. 85-89
Author(s):  
Francisco J. Hidalgo ◽  
Nathan A.P. Lorentz ◽  
TinTin B. Luu ◽  
Jonathan D. Tran ◽  
Praveen D. Wickremasinghe ◽  
...  

: Maltodextrins have an increasing number of biomedical and industrial applications due to their attractive physicochemical properties such as biodegradability and biocompatibility. Herein, we describe the development of a synthetic pathway and characterization of thiol-responsive maltodextrin conjugates with dithiomaleimide linkages. 19F NMR studies were also conducted to demonstrate the exchange dynamics of the dithiomaleimide-functionalized sugar end groups.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shahrbanoo Hamedi ◽  
M. Mehdi Afsahi ◽  
Ali Riahi-Madvar ◽  
Ali Mohebbi

AbstractThe main advantages of the dried enzymes are the lower cost of storage and longer time of preservation for industrial applications. In this study, the spouted bed dryer was utilized for drying the garden radish (Raphanus sativus L.) root extract as a cost-effective source of the peroxidase enzyme. The response surface methodology (RSM) was used to evaluate the individual and interactive effects of main parameters (the inlet air temperature (T) and the ratio of air flow rate to the minimum spouting air flow rate (Q)) on the residual enzyme activity (REA). The maximum REA of 38.7% was obtained at T = 50 °C and Q = 1.4. To investigate the drying effect on the catalytic activity, the optimum reaction conditions (pH and temperature), as well as kinetic parameters, were investigated for the fresh and dried enzyme extracts (FEE and DEE). The obtained results showed that the optimum pH of DEE was decreased by 12.3% compared to FEE, while the optimum temperature of DEE compared to FEE increased by a factor of 85.7%. Moreover, kinetic parameters, thermal-stability, and shelf life of the enzyme were considerably improved after drying by the spouted bed. Overall, the results confirmed that a spouted bed reactor can be used as a promising method for drying heat-sensitive materials such as peroxidase enzyme.


Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1182
Author(s):  
Seung-Jun Kim ◽  
Yong Cho ◽  
Jin-Hyuk Kim

Under low flow-rate conditions, a Francis turbine exhibits precession of a vortex rope with pressure fluctuations in the draft tube. These undesirable flow phenomena can lead to deterioration of the turbine performance as manifested by torque and power output fluctuations. In order to suppress the rope with precession and a swirl component in the tube, the use of anti-swirl fins was investigated in a previous study. However, vortex rope generation still occurred near the cone of the tube. In this study, unsteady-state Reynolds-averaged Navier–Stokes analyses were conducted with a scale-adaptive simulation shear stress transport turbulence model. This model was used to observe the effects of the injection in the draft tube on the unsteady internal flow and pressure phenomena considering both active and passive suppression methods. The air injection affected the generation and suppression of the vortex rope and swirl component depending on the flow rate of the air. In addition, an injection level of 0.5%Q led to a reduction in the maximum unsteady pressure characteristics.


2011 ◽  
Vol 189-193 ◽  
pp. 2285-2288
Author(s):  
Wen Hua Jia ◽  
Chen Bo Yin ◽  
Guo Jin Jiang

Flow features, specially, flow rate, discharge coefficient and efflux angle under different operating conditions are numerically simulated, and the effects of shapes and the number of notches on them are analyzed. To simulate flow features, 3D models are developed as commercially available fluid flow models. Most construction machineries in different conditions require different actions. Thus, in order to be capable of different actions and exhibit good dynamic behavior, flow features should be achieved in designing an optimized proportional directional spool valve.


2021 ◽  
Author(s):  
Marcio Yamamoto ◽  
Tomo Fujiwara ◽  
Joji Yamamoto ◽  
Sotaro Masanobu

Abstract One key technology for Deep-Sea Mining is the riser system. The riser is already a field-proven technology in the Petroleum Industry. However, several differences exist between a petroleum production riser and a riser for Deep-Sea Mining, mainly related to the internal flow. The ore-slurry has a larger density than the hydrocarbons and shall be pumped with a much higher flowrate. The current software tools for riser’s dynamic analysis may include the internal fluid hydrostatic pressure and the centrifugal and Coriolis forces imposed by the bent pipe’s internal flow. However, the internal pressure drop is not calculated. The internal pressure alters the pipe’s effective tension and can alter the pipe’s bending moment changing its mechanical behavior. This article describes a computational script’s development to run embedded in a commercial software for riser’s dynamic analysis. Our script calculates the internal viscous pressure drop along with the jumper. This pressure is then converted into wall axial tension (buckling) and imposed on each node of the jumper’s numerical model. Each simulation case was calculated twice with and without the internal flow viscous pressure drop. The comparison with experimental data revealed that the jumper’s average position has a good agreement among all cases. However, the amplitude caused by the top oscillation showed some discrepancies. Experimental data has the highest amplitude in the horizontal direction, while the simulation without viscous pressure calculation had the smallest. The simulation with our embedded script had intermediary amplitude in the horizontal direction. The vertical direction amplitudes have the same behavior for all cases, but the experimental data showed the highest amplitude.


Author(s):  
Erik Vargas Rojas ◽  
David Chapelle ◽  
Dominique Perreux

Industrial applications, especially composite structures bearing high internal pressure, and fabricated using the filament winding process face certain difficulties like the reinforcement of complex shapes, as well as the correct placement of fibers over the surface of a mandrel. In some cases the definition of the manufacturing parameters respond more to cost or time criteria rather than engineering standards, reducing largely the advantages of the said manufacturing process. In order to overcome these obstacles, this research aims to propose a solution that permits to fabricate complex shapes with the desired winding angles at a certain region of complex-shaped mandrels. A numerical tool that simulates the placement of fiber tows over the surface of complex geometries is developed and validated by means of the fabrication of convex and concave composite structures using detachable mandrels. Previous results show that it is feasible to wind complex geometries with good accuracy.


2002 ◽  
Vol 124 (4) ◽  
pp. 1025-1031 ◽  
Author(s):  
M. Spirig ◽  
J. Schmied ◽  
P. Jenckel ◽  
U. Kanne

The use of magnetic bearing in industrial applications has increased due to their unique properties. Nowadays efficiency and predictability in handling rotors on magnetic bearings is asked with the same standard as conventional rotors on oil or roller bearings. First of all one must be aware of the special technical properties of magnetic bearing designs. The dynamic behavior of the rotor combined with requirements of the application define the desired bearing characteristic. With modern tools covering the mechanical aspects as well as the electronic controllers and their digital implementation on a DSP, these properties can be designed. However, despite the use of such efficient tools engineering practice is needed. Therefore this paper summarizes the major steps in the control design process of industrial applications. Three rotors supported on magnetic bearing with their specific dynamic behavior are presented: a very small high speed spindle (120,000 rpm); a small industrial turbo molecular pump rotor (36,000 rpm); and a large multistage centrifugal compressor (600 to 6300 rmp). The results of the analyses and their experimental verification are given.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Nisha Bhardwaj ◽  
Bikash Kumar ◽  
Komal Agrawal ◽  
Pradeep Verma

AbstractThe potential of cellulolytic enzymes has been widely studied and explored for bioconversion processes and plays a key role in various industrial applications. Cellulase, a key enzyme for cellulose-rich waste feedstock-based biorefinery, has increasing demand in various industries, e.g., paper and pulp, juice clarification, etc. Also, there has been constant progress in developing new strategies to enhance its production, such as the application of waste feedstock as the substrate for the production of individual or enzyme cocktails, process parameters control, and genetic manipulations for enzyme production with enhanced yield, efficiency, and specificity. Further, an insight into immobilization techniques has also been presented for improved reusability of cellulase, a critical factor that controls the cost of the enzyme at an industrial scale. In addition, the review also gives an insight into the status of the significant application of cellulase in the industrial sector, with its techno-economic analysis for future applications. The present review gives a complete overview of current perspectives on the production of microbial cellulases as a promising tool to develop a sustainable and greener concept for industrial applications.


Author(s):  
Yu Wang ◽  
Ruiwei Li ◽  
Lin Luo ◽  
Lin Ruan

The application of elbow flowmeter in rotary equipments is beneficial to reduce the pipeline complexity. However, the intervention of centrifugal acceleration will lead to the change of metrological characteristics of elbow flowmeter. Based on the analysis of the differential pressure formation mechanism of the environmental acceleration on the elbow flowmeter, the calculation formula of the flow rate measurement with the elbow flowmeter in the rotating state is derived, and the fitting method of the discharge coefficient is put forward. The CFD method was used to analyze the internal flow field of the elbow flowmeter under rotating state, summarize the pressure distribution characteristics of the pipe wall, and verify the feasibility of the discharge coefficient fitting strategy by simulation. The results show that for the elbow flowmeters with diameters of 10 mm and 15 mm and the radius to diameter ratio of 1.5, as long as the water flow rate is between 1.5 m/s and 5 m/s, the measurement accuracy can be guaranteed to be above 4%.


Sign in / Sign up

Export Citation Format

Share Document