scholarly journals Adaptive and robust evidence theory with applications in prediction of floor water inrush in coal mine

2017 ◽  
Vol 39 (4) ◽  
pp. 483-493 ◽  
Author(s):  
Fenglian Li ◽  
Xueying Zhang ◽  
Xiaolei Chen ◽  
Yu-Chu Tian

The Internet of Things generates rich information either from different sources or the same source via different measurement methods. This demands data fusion for decision making. Despite the progress in data fusion, existing data fusion techniques, such as the classic Dempster–Shafer evidence Theory, face challenges when dealing with highly conflicting sources of evidence. To address this problem, an Adaptive and Robust evidence Theory (ART) is presented in this paper through a robust combination of conjunctive and disjunctive rules. It is capable of handling both conflicting and reliable sources of evidence. When the sources of evidence are reliable, the conjunctive rule plays a predominant role, whereas if the sources of evidence are in high conflict the disjunctive rule is critical. Our ART approach was compared with existing representative evidence theory methods through two examples, and was further applied in the prediction of floor water inrush in coal mines. The ART approach presented in this paper was demonstrated to behave better than the existing methods.

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Like Wang ◽  
Yu Bao

Dempster-Shafer evidence theory can effectively process imperfect information and is widely used in a data fusion system. However, classical Dempster-Shafer evidence theory involves counter-intuitive behaviors with the data of multisensor high conflict in target identification system. In order to solve this problem, an improved evidence combination method is proposed in this paper. By calculating the support degree and the belief entropy of each sensor, the proposed method combines conflict evidences. A new method is used to calculate support degree in this paper. At the same time, inspired by Deng entropy, the modified belief entropy is proposed by considering the scale of the frame of discernment (FOD) and the relative scale of the intersection between evidences with respect to FOD. Because of these two modifications, the effect has been improved in conflict data fusion. Several methods are compared and analyzed through examples. And the result suggests the proposed method can not only obtain reasonable and correct results but also have the highest fusion reliability in solving the problem of high conflict data fusion.


2014 ◽  
Vol 7 (1) ◽  
pp. 78-83 ◽  
Author(s):  
Jiatang Cheng ◽  
Li Ai ◽  
Zhimei Duan ◽  
Yan Xiong

Aiming at the problem of the conventional vibration fault diagnosis technology with inconsistent result of a hydroelectric generating unit, an information fusion method was proposed based on the improved evidence theory. In this algorithm, the original evidence was amended by the credibility factor, and then the synthesis rule of standard evidence theory was utilized to carry out information fusion. The results show that the proposed method can obtain any definitive conclusion even if there is high conflict evidence in the synthesis evidence process, and may avoid the divergent phenomenon when the consistent evidence is fused, and is suitable for the fault classification of hydroelectric generating unit.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 820
Author(s):  
Jingyu Liu ◽  
Yongchuan Tang

The multi-agent information fusion (MAIF) system can alleviate the limitations of a single expert system in dealing with complex situations, as it allows multiple agents to cooperate in order to solve problems in complex environments. Dempster–Shafer (D-S) evidence theory has important applications in multi-source data fusion, pattern recognition, and other fields. However, the traditional Dempster combination rules may produce counterintuitive results when dealing with highly conflicting data. A conflict data fusion method in a multi-agent system based on the base basic probability assignment (bBPA) and evidence distance is proposed in this paper. Firstly, the new bBPA and reconstructed BPA are used to construct the initial belief degree of each agent. Then, the information volume of each evidence group is obtained by calculating the evidence distance so as to modify the reliability and obtain more reasonable evidence. Lastly, the final evidence is fused with the Dempster combination rule to obtain the result. Numerical examples show the effectiveness and availability of the proposed method, which improves the accuracy of the identification process of the MAIF system.


2009 ◽  
Author(s):  
Wei-Jun Chen ◽  
Zhan-Rong Jing ◽  
An-Fu Zhu ◽  
Fang-Fei Yuan

2015 ◽  
Vol 713-715 ◽  
pp. 539-543
Author(s):  
Yong Zhao ◽  
Xiao Qiang Yang ◽  
Yin Hua Xu ◽  
Jian Bin Li

The fault diagnosis of electrical control system of certain type mine sweeping vehicle is difficult due to its complex structure and advanced technique. So in the multi-sensor failure diagnosis process, as a result of various reasons, such as the existence of measurement noise, diagnosis knowledge incomplete and so on, it makes the fault diagnosis uncertainty and affects the reliability and the accuracy of the diagnosis result. This article according to the analysis of electrical control system's fault characteristic of the mine sweeping plough’s, proposes a technique based on data fusion fault diagnosis method. The diagnosis process is divided into the sub system and the system-level, the subsystem uses the BP neural network to classify the fault mode, the system-level uses the D-S evidence theory carries on the comprehensive decision judgment for the whole system's fault. Application shows if some sub-neural network diagnosis has error, using D-S evidence theory fusion can effectively improve the accuracy of diagnosis.


Sign in / Sign up

Export Citation Format

Share Document