scholarly journals Comparison of delayless digital filtering algorithms and their application to multi-sensor signal processing

2018 ◽  
Vol 41 (8) ◽  
pp. 2338-2351 ◽  
Author(s):  
Anna Swider ◽  
Eilif Pedersen

In the phase of industry digitalization, data are collected from many sensors and signal processing techniques play a crucial role. Data preprocessing is a fundamental step in the analysis of measurements, and a first step before applying machine learning. To reduce the influence of distortions from signals, selective digital filtering is applied to minimize or remove unwanted components. Standard software and hardware digital filtering algorithms introduce a delay, which has to be compensated for to avoid destroying signal associations. The delay from filtering becomes more crucial when the analysis involves measurements from multiple sensors, therefore in this paper we provide an overview and comparison of existing digital filtering methods with an application based on real-life marine examples. In addition, the design of special-purpose filters is a complex process and for preprocessing data from many sources, the application of digital filtering in the time domain can have a high numerical cost. For this reason we describe discrete Fourier transformation digital filtering as a tool for efficient sensor data preprocessing, which does not introduce a time delay and has low numerical cost. The discrete Fourier transformation digital filtering has a simpler implementation and does not require expert-level filter design knowledge, which is beneficial for practitioners from various disciplines. Finally, we exemplify and show the application of the methods on real signals from marine systems.

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 408
Author(s):  
Jonas Chromik ◽  
Kristina Kirsten ◽  
Arne Herdick ◽  
Arpita Mallikarjuna Kappattanavar ◽  
Bert Arnrich

Observational studies are an important tool for determining whether the findings from controlled experiments can be transferred into scenarios that are closer to subjects’ real-life circumstances. A rigorous approach to observational studies involves collecting data from different sensors to comprehensively capture the situation of the subject. However, this leads to technical difficulties especially if the sensors are from different manufacturers, as multiple data collection tools have to run simultaneously. We present SensorHub, a system that can collect data from various wearable devices from different manufacturers, such as inertial measurement units, portable electrocardiographs, portable electroencephalographs, portable photoplethysmographs, and sensors for electrodermal activity. Additionally, our tool offers the possibility to include ecological momentary assessments (EMAs) in studies. Hence, SensorHub enables multimodal sensor data collection under real-world conditions and allows direct user feedback to be collected through questionnaires, enabling studies at home. In a first study with 11 participants, we successfully used SensorHub to record multiple signals with different devices and collected additional information with the help of EMAs. In addition, we evaluated SensorHub’s technical capabilities in several trials with up to 21 participants recording simultaneously using multiple sensors with sampling frequencies as high as 1000 Hz. We could show that although there is a theoretical limitation to the transmissible data rate, in practice this limitation is not an issue and data loss is rare. We conclude that with modern communication protocols and with the increasingly powerful smartphones and wearables, a system like our SensorHub establishes an interoperability framework to adequately combine consumer-grade sensing hardware which enables observational studies in real life.


2013 ◽  
Vol 300-301 ◽  
pp. 1669-1672
Author(s):  
Yong Li

In order to improve the quality and precision of seismic data, taking out or suppressing interference wave consisting in the earthquake wave will be one important link in the digital processing of seismic data .The fast Fournier transformation resolves big points N into certain dot’s DFT combinations .And then breaking a large number of multiply operations to add operations and a small quality of multiply operations, thus the computation speed of the Discrete Fourier Transformation (DFT) will be enhanced greatly. The widespread uses of FFT make it to be a powerful tool in digital signal processing. The present paper will introduce the quite comprehensive narration of the principle of filter, the characteristic of fast Fournier transformation algorithm principle as well as the realization.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 405
Author(s):  
Marcos Lupión ◽  
Javier Medina-Quero ◽  
Juan F. Sanjuan ◽  
Pilar M. Ortigosa

Activity Recognition (AR) is an active research topic focused on detecting human actions and behaviours in smart environments. In this work, we present the on-line activity recognition platform DOLARS (Distributed On-line Activity Recognition System) where data from heterogeneous sensors are evaluated in real time, including binary, wearable and location sensors. Different descriptors and metrics from the heterogeneous sensor data are integrated in a common feature vector whose extraction is developed by a sliding window approach under real-time conditions. DOLARS provides a distributed architecture where: (i) stages for processing data in AR are deployed in distributed nodes, (ii) temporal cache modules compute metrics which aggregate sensor data for computing feature vectors in an efficient way; (iii) publish-subscribe models are integrated both to spread data from sensors and orchestrate the nodes (communication and replication) for computing AR and (iv) machine learning algorithms are used to classify and recognize the activities. A successful case study of daily activities recognition developed in the Smart Lab of The University of Almería (UAL) is presented in this paper. Results present an encouraging performance in recognition of sequences of activities and show the need for distributed architectures to achieve real time recognition.


2021 ◽  
Vol 4 (1) ◽  
pp. 3
Author(s):  
Parag Narkhede ◽  
Rahee Walambe ◽  
Shruti Mandaokar ◽  
Pulkit Chandel ◽  
Ketan Kotecha ◽  
...  

With the rapid industrialization and technological advancements, innovative engineering technologies which are cost effective, faster and easier to implement are essential. One such area of concern is the rising number of accidents happening due to gas leaks at coal mines, chemical industries, home appliances etc. In this paper we propose a novel approach to detect and identify the gaseous emissions using the multimodal AI fusion techniques. Most of the gases and their fumes are colorless, odorless, and tasteless, thereby challenging our normal human senses. Sensing based on a single sensor may not be accurate, and sensor fusion is essential for robust and reliable detection in several real-world applications. We manually collected 6400 gas samples (1600 samples per class for four classes) using two specific sensors: the 7-semiconductor gas sensors array, and a thermal camera. The early fusion method of multimodal AI, is applied The network architecture consists of a feature extraction module for individual modality, which is then fused using a merged layer followed by a dense layer, which provides a single output for identifying the gas. We obtained the testing accuracy of 96% (for fused model) as opposed to individual model accuracies of 82% (based on Gas Sensor data using LSTM) and 93% (based on thermal images data using CNN model). Results demonstrate that the fusion of multiple sensors and modalities outperforms the outcome of a single sensor.


Author(s):  
Yousun Li

In the time domain simulation of the response of an offshore structure under random waves, the time histories of the wave field should be generated as the input to the dynamic equations. Herein the wave field is the wave surface elevation, the water particle velocities and accelerations at structural members. The generated time histories should be able to match the given wave-field spectral descriptions, to trace the structural member motions if it is a compliant offshore structure, and be numerically efficient. Most frequently used generation methods are the direct summation of a limited number of cosine functions, the Fast Fourier Transformation, and the digital filtering model. However, none of them can really satisfy all the above requirements. A novel technique, called the Modulated Discrete Fourier Transformation, has been developed. Under this method, the wave time histories at each time instant is a summation of a few time-varying complex functions. The simulated time histories have continuous spectral density functions, and the motions of the structural members are well included. This method seems to be superior to all the conventional methods in terms of the above mentioned three requirements.


Sign in / Sign up

Export Citation Format

Share Document