Event-triggered H∞ control for networked control systems under denial-of-service attacks

Author(s):  
Liruo Zhang ◽  
Sing Kiong Nguang ◽  
Shen Yan

This paper investigates the event-triggered H∞ control for networked control systems under the denial-of-service (DoS) attacks. First, a novel system model is established considering random, time-constraint DoS attacks. Second, an event-triggered scheme including an off-time is proposed to reduce the unnecessary occupation of network resources, with which a prescribed minimum inter-triggering time is guaranteed and Zeno problem is avoided. Third, sufficient conditions for the existence of an event-triggered controller which ensures the exponential stability of the closed-loop system with desired H∞ performance are formulated in linear matrix inequalities (LMIs). Finally, the effectiveness of the proposed method is examined by two illustrative examples, where a real communication network based on the ZigBee protocol is utilized.

Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6866
Author(s):  
Weifan Lu ◽  
Xiuxia Yin ◽  
Yichuan Fu ◽  
Zhiwei Gao

This paper studies the problem of DoS attack defense based on static observer-based event-triggered predictive control in networked control systems (NCSs). First, under the conditions of limited network bandwidth resources and the incomplete observability of the state of the system, we introduce the event-triggered function to provide a discrete event-triggered transmission scheme for the observer. Then, we analyze denial-of-service (DoS) attacks that occur on the network transmission channel. Using the above-mentioned event-triggered scheme, a novel class of predictive control algorithms is designed on the control node to proactively save network bandwidth and compensate for DoS attacks, which ensures the stability of NCSs. Meanwhile, a closed-loop system with an observer-based event-triggered predictive control scheme for analysis is created. Through linear matrix inequality (LMI) and the Lyapunov function method, the design of the controller, observer and event-triggered matrices is established, and the stability of the scheme is analyzed. The results show that the proposed solution can effectively compensate DoS attacks and save network bandwidth resources by combining event-triggered mechanisms. Finally, a smart grid simulation example is employed to verify the feasibility and effectiveness of the scheme’s defense against DoS attacks.


Author(s):  
Qian Zhang ◽  
Huaicheng Yan ◽  
Shiming Chen ◽  
Xisheng Zhan ◽  
Xiaowei Jiang

This paper is concerned with the problem of finite-time dissipative control for networked control systems by hybrid triggered scheme. In order to save network resources, a hybrid triggered scheme is proposed, which consists of time-triggered scheme and event-triggered scheme simultaneously. Firstly, sufficient conditions are derived to guarantee that the closed-loop system is finite-time bounded (FTBD) and [Formula: see text] dissipative. Secondly, the corresponding controller design approach is presented based on the derived conditions. Finally, a numerical example is presented to show the effectiveness of the proposed approach.


2012 ◽  
Vol 629 ◽  
pp. 835-839
Author(s):  
Ye Guo Sun

In this paper, the stability and stabilization problems of a class of networked control systems (NCSs) with bounded packet dropout are investigated. An iterative approach is proposed to model NCSs with bounded packet dropout as Markovian jump linear systems (MJLSs). The transition probabilities of MJLSs are partly unknown due to the complexity of network. The system under consideration is more general, which covers the systems with completely known and completely unknown transition probabilities as two special cases. Moreover, both sensor-to-controller and controller-to-actuator packet dropouts are considered simultaneously. The sufficient conditions for stochastic stability and stabilization of the underlying systems are derived via linear matrix inequalities (LMIs) formulation. Lastly, an illustrative example is given to demonstrate the effectiveness of the proposed results.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Yuan Li ◽  
Qingling Zhang ◽  
Shuanghong Zhang ◽  
Min Cai

This paper investigates the stabilization of networked control systems (NCSs) with random delays and random sampling periods. Sampling periods can randomly switch between three cases according to the high, low, and medium types of network load. The sensor-to-controller (S-C) random delays and random sampling periods are modeled as Markov chains. The transition probabilities of Markov chains do not need to be completely known. A state feedback controller is designed via the iterative linear matrix inequality (LMI) approach. It is shown that the designed controller is two-mode dependent and depends on not only the currentS-Cdelay but also the most recent available sampling period at the controller node. The resulting closed-loop systems are special discrete-time jump linear systems with two modes. The sufficient conditions for the stochastic stability are established. An example of the cart and inverted pendulum is given to illustrate the effectiveness of the theoretical result.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yuming Zhai ◽  
Ruixia Yan ◽  
Haifeng Liu ◽  
Jinliang Liu

This paper introduces a novel event-triggered scheme into networked control systems which is used to determine when to transmit the newly sampled state information to the controller. Considering the effect of the network transmission delay and probabilistic actuator fault with different failure rates, a new actuator fault model is proposed under this event-triggered scheme. Then, criteria for the exponential mean square stability (EMSS) and criteria for codesigning both the feedback and the trigger parameters are derived by using Lyapunov functional method. These criteria are obtained in the form of linear matrix inequalities. A simulation example is employed to show that our event-triggered scheme can lead to a larger release period than some existing ones.


Sign in / Sign up

Export Citation Format

Share Document