Composite nonlinear feedback–based adaptive integral sliding mode control for a servo position control system subject to external disturbance

Author(s):  
Hui Chen ◽  
Min Xiang ◽  
Bingjie Guan ◽  
Weijie Sun

This paper presents a composite nonlinear feedback–based adaptive integral sliding mode controller with a reaching law (CNF-AISMRL) for fast and accurate control of a servo position control system subject to external disturbance. The proposed controller exploits the advantages of composite nonlinear feedback (CNF) and sliding mode control (SMC) schemes to improve the transient performance and increase the robustness of the closed-loop system. An integral sliding mode combined with a quick reaching law is designed to eliminate the effect of disturbances, which mitigates chattering and achieves finite-time convergence of the sliding mode. An adaptation tuning approach is utilized to deal with unknown but bounded system uncertainties and disturbances. When considering the model uncertainties and disturbances, the stability of the closed-loop system is verified based on the Lyapunov theorem. Numerical simulations are investigated to the effectiveness of the proposed scheme. The transient performance of load disk position to step signal with disturbances using CNF, composite nonlinear feedback based integral sliding mode control (CNF-ISM), and the proposed CNF-AISMRL schemes is given. The simulation results indicate that, without acquiring the knowledge of bounds on system disturbances, the proposed control scheme has superior performance in the presence of time-varying disturbances.

2011 ◽  
Vol 317-319 ◽  
pp. 1490-1494 ◽  
Author(s):  
Bao Quan Jin ◽  
Yan Kun Wang ◽  
Ya Li Ma

The parameters uncertainty and external disturbance play a negative role to improve electro-hydraulic position servo system performance. The valve controlled cylinder system model is established, using the traditional PID control strategy and reaching law control strategy for simulating the system, respectively, the two methods have similar control effects in the ideal model, but considering the external disturbances, the index approaches sliding mode control law has better response speed and stability. Research shown that sliding mode control algorithm has an important role for improving the performance of hydraulic servo position control system.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Xie Zheng ◽  
Xie Jian ◽  
Du Wenzheng ◽  
Cheng Hongjie

A nonlinear integral sliding-mode control (NISMC) scheme is proposed for second order nonlinear systems. The new control scheme is characterized by a nonlinear integral sliding manifold which inherits the desired properties of the integral sliding manifold, such as robustness to system external disturbance. In particular, compared with four kinds of sliding mode control (SMC), the proposed control scheme is able to provide better transient performances. Furthermore, the proposed scheme ensures the zero steady-state error in the presence of a constant disturbance or an asymptotically constant disturbance is proved by Lyapunov stability theory and LaSalle invariance principle. Finally, both the theoretical analysis and simulation examples demonstrate the validity of the proposed scheme.


Robotica ◽  
2018 ◽  
Vol 36 (11) ◽  
pp. 1701-1727 ◽  
Author(s):  
Mohd Ariffanan Mohd Basri

SUMMARYThe quadrotor aerial robot is a complex system and its dynamics involve nonlinearity, uncertainty, and coupling. In this paper, an adaptive backstepping sliding mode control (ABSMC) is presented for stabilizing, tracking, and position control of a quadrotor aerial robot subjected to external disturbances. The developed control structure integrates a backstepping and a sliding mode control approach. A sliding surface is introduced in a Lyapunov function of backstepping design in order to further improve robustness of the system. To attenuate a chattering problem, a saturation function is used to replace a discontinuous sign function. Moreover, to avoid a necessity for knowledge of a bound of external disturbance, an online adaptation law is derived. Particle swarm optimization (PSO) algorithm has been adopted to find parameters of the controller. Simulations using a dynamic model of a six degrees of freedom (DOF) quadrotor aerial robot show the effectiveness of the approach in performing stabilization and position control even in the presence of external disturbances.


2012 ◽  
Vol 466-467 ◽  
pp. 1334-1338 ◽  
Author(s):  
De Ying Li

Aiming at high speed and accuracy position control, this paper introduces design of an optimal internal mode control and sliding mode control for rocket launcher servo systems which have large varied moment of inertia, strong impact moment and load moment. Internal mode control designed by LQR theory can satisfy system requirement of the position loop in PMSM system. Sliding mode control can restrain effects that caused by model parameter perturbation and external disturbance and realize high performance position control. Simulation results show that the control method is simple and has better performances compared with PID controller.


2014 ◽  
Vol 912-914 ◽  
pp. 727-731
Author(s):  
Tao Zhou ◽  
Xi Feng Liang

In order to improve the control performance of position trajectory tracking of manipulator joint, a sliding mode control (SMC) method based on genetic algorithm(GA) is proposed in this paper. In this method, the performance of SMC algorithm is improved through adjusting the parameters of switching function and exponential approach law by genetic algorithm. The method was applied to accomplish the precise position control of manipulator joint. Simulation experiments show that the response time in manipulator joint control system by the SMC method based on GA is reduced 0.62s than the ordinary SMC algorithm. And the system restore stability time with a load change is also reduced 0.7s. External disturbance has no significant effect on the control system. The chattering of controller output is significantly reduced.


2021 ◽  
Vol 33 (3) ◽  
pp. 883
Author(s):  
Yamato Kawamura ◽  
Junichiro Tahara ◽  
Tetsu Kato ◽  
Shun Fujii ◽  
Shoichiro Baba ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document