A novel full-order and reduced-order fault detection filters design method for continuous-time singular Markov jump systems with complexity transition rates

Author(s):  
Yunling Shi ◽  
Xiuyan Peng

This work is concerned with the problem of full-order and reduced-order fault detection filters (FDFs) design in a convex optimization frame for continuous-time singular Markov jump systems (CTSMJSs) with complexity transition rates (TRs). A novel Lyapunov function construct approach is utilized to cope with the stochastic admissibility problem for CTSMJSs with complexity TRs. In order to obtain effective full-order and reduced-order FDFs, we decoupled the inequality using the presupposed Lyapunov matrix. Owing to the use of Lyapunov stochastic admissibility theory and a novel decoupling method based on convex polyhedron technique, some sufficient conditions are obtained to guarantee that the resulting full-order and reduced-order FDFs are suitable for CTSMJSs with complexity TRs. In particular, the reduced-order FDF has the advantages of small storage space and fast detection speed compared with the full order FDF. Four illustrative examples are given to explain the effectiveness of the proposed full-order and reduced-order FDFs design method.

Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Lihong Rong ◽  
Xiuyan Peng ◽  
Biao Zhang

The fault detection (FD) reduced-order filtering problem is investigated for a family of continuous-time Markovian jump linear systems (MJLSs) with polytopic uncertain transition rates, which also include the totally known and partly unknown transition rates. Then, in accordance with the convexification techniques, a novel sufficient condition for the existence of FD reduced-order filter over MJLSs with deficient transition information is obtained in terms of linear matrix inequality (LMI), which can ensure the error augmented system with the FD reduced-order filter is randomly stable. In addition, a performance index is given to enhance the robustness of the residual system against deficient transition information and external disturbance, such that the error between the fault and the residual is made as small as possible to reinforce the faults sensitivity. Finally, the effectiveness of the proposed method is substantiated with two illustrative examples.


2021 ◽  
pp. 1-12
Author(s):  
Peng Cheng ◽  
Hai Wang ◽  
Vladimir Stojanovic ◽  
Shuping He ◽  
Kaibo Shi ◽  
...  

2017 ◽  
Vol 40 (9) ◽  
pp. 2789-2797 ◽  
Author(s):  
Jingyu Li ◽  
Liang Shen ◽  
Fengqi Yao ◽  
Huanyu Zhao ◽  
Jing Wang

This paper studies the issue of finite-time observer-based control via an event-triggered scheme for Markov jump repeated scalar nonlinear systems. An observer-based controller via an event-triggered scheme is proposed, which can save the limited network communication bandwidth effectively, so that the resulting error system is stochastically finite-time bounded. Based on the positive definite diagonally dominant matrix and the Lyapunov function technique, a sufficient condition is presented for the solvability of the addressed problem, and the desired observer-based controller can be constructed via a convex optimization problem. In the end, a simulation example is employed to show the validity and practicability of the proposed design method.


Sign in / Sign up

Export Citation Format

Share Document