scholarly journals Geochemical characteristics and origins of biodegraded oils in the Bongor Basin (Chad) and their implications for petroleum exploration

2022 ◽  
pp. 014459872110695
Author(s):  
Dingsheng Cheng ◽  
Lirong Dou ◽  
Qingyao Chen ◽  
Wenqiang Wang

The Bongor Basin is a typical lacustrine passive-rifted basin situated in the West and Central African Rift System (WCARS). It has experienced two phases of tectonic inversion and features a complex process of petroleum generation and accumulation. A total of 41 crude oil samples from the basin were geochemically analyzed to investigate their compositions of molecular markers. The results show that the oils have similar origins and are likely to belong to the same oil population. However, there are significant differences in geochemical characteristics and physical properties, caused by the secondary alteration. The relative contents and distribution patterns of normal alkanes and acyclic isoprenoids indicate that some of the oils have suffered biodegradation to varying degrees. The samples can be divided into three categories according to their relative degrees of degradation: normal oil, slightly biodegraded oil (PM 1–3), and severely biodegraded oil (PM 5–7). The burial depth of oil reservoirs in this area is the predominant factor impacting on the level of biodegradation. Crude oils in reservoirs with burial depths of less than 800 m are all severely biodegraded, while oils in reservoirs with burial depths greater than 1300 m have experienced no evident biodegradation. In reservoirs with burial depths between 800 m and 1300 m, the biodegradation degrees vary from normal to severely biodegraded. Oil reservoirs with burial depths less than 1300 m and adjacent to major faults are readily subject to biodegradation, while reservoirs with similar burial depths, but a certain distance away from major faults, have suffered no evident biodegradation. Moreover, if primary reservoirs have been modified by tectonic activity after accumulation, the crude oils are more likely to be biodegraded. Faulted anticline traps may create more favorable geological conditions for preservation of crude oil than reverse extrusion anticline reservoirs. This study may provide practical guidance for the assessment and prediction of oil quality in future oil exploration.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Dongmei Bo ◽  
Lin Jiang ◽  
Wen Zhao ◽  
Youlu Jiang ◽  
Hua Liu ◽  
...  

The identification of the oil-source correlation plays a significant role in petroleum exploration and development. In this study, we identify the oil-source correlation by a hierarchical cluster analysis method combined with traditional methods. The results shed light on the oil-source correlation in Minfeng area and revealed the oil migration and accumulation process. The crude oil in different structural belts and different horizons has different geochemical characteristics. According to the four types of crude oil and their planner distribution, it was considered that the crude oil mainly migrates along with favorable sand bodies and unconformity surfaces in the lateral direction and then charged and accumulated in the glutenite of Sha3 and Sha4 members since the area from sag to Yan Jia Oil and the gas field was lacking of oil source faults. Further analysis shows that the traps of fault blocks in Yong’anzhen are formed in the same phase, while the crude oil generated in the early stage is charged and accumulated in the fault block of the near source. Along with increasing of the buried depth of source rocks, the overlying source rocks gradually entered into the hydrocarbon generation phase, when crude oil started to charge in the fault blocks farther away.


2018 ◽  
Vol 5 (1) ◽  
pp. 43-54
Author(s):  
Suresh Aluvihara ◽  
Jagath K Premachandra

Corrosion is a severe matter regarding the most of metal using industries such as the crude oil refining. The formation of the oxides, sulfides or hydroxides on the surface of metal due to the chemical reaction between metals and surrounding is the corrosion that  highly depended on the corrosive properties of crude oil as well as the chemical composition of ferrous metals since it was expected to investigate the effect of Murban and Das blend crude oils on the rate of corrosion of seven different ferrous metals which are used in the crude oil refining industry and investigate the change in hardness of metals. The sulfur content, acidity and salt content of each crude oil were determined. A series of similar pieces of seven different types of ferrous metals were immersed in each crude oil separately and their rates of corrosion were determined by using their relative weight loss after 15, 30 and 45 days. The corroded metal surfaces were observed under the microscope. The hardness of each metal piece was tested before the immersion in crude oil and after the corrosion with the aid of Vicker’s hardness tester. The metallic concentrations of each crude oil sample were tested using atomic absorption spectroscopy (AAS). The Das blend crude oil contained higher sulfur content and acidity than Murban crude oil. Carbon steel metal pieces showed the highest corrosion rates whereas the stainless steel metal pieces showed the least corrosion rates in both crude oils since that found significant Fe and Cu concentrations from some of crude oil samples. The mild steel and the Monel showed relatively intermediate corrosion rates compared to the other types of ferrous metal pieces in both crude oils. There was a slight decrease in the initial hardness of all the ferrous metal pieces due to corrosion.


Resources ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 75
Author(s):  
Ivelina K. Shishkova ◽  
Dicho S. Stratiev ◽  
Mariana P. Tavlieva ◽  
Rosen K. Dinkov ◽  
Dobromir Yordanov ◽  
...  

Thirty crude oils, belonging to light, medium, heavy, and extra heavy, light sulfur, and high sulfur have been characterized and compatibility indices defined. Nine crude oil compatibility indices have been employed to evaluate the compatibility of crude blends from the thirty individual crude oils. Intercriteria analysis revealed the relations between the different compatibility indices, and the different petroleum properties. Tetra-plot was employed to model crude blend compatibility. The ratio of solubility blending number to insolubility number was found to best describe the desalting efficiency, and therefore could be considered as the compatible index that best models the crude oil blend compatibility. Density of crude oil and the n-heptane dilution test seem to be sufficient to model, and predict the compatibility of crude blends.


Chemosphere ◽  
2021 ◽  
pp. 131563
Author(s):  
Laurens van Gelderen ◽  
Kristoffer Gulmark Poulsen ◽  
Jan H. Christensen ◽  
Grunde Jomaas

2019 ◽  
Vol 38 (3) ◽  
pp. 240-246 ◽  
Author(s):  
Yonghong He ◽  
Xiaoyan Fu ◽  
Tingyan Li ◽  
Xiujuan Wang ◽  
Yibo Chang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document