Book Review & Note: European Oil and Gas Production (UK North Sea Oil Reserves)

1993 ◽  
Vol 11 (1) ◽  
pp. 73-74
1996 ◽  
Vol 14 (1) ◽  
pp. 3-11
Author(s):  
P.R. Odell

The size and longevity of Britain's offshore hydrocarbons resources have been underestimated. Gas reserves were seriously under-exploited for almost 20 years from the late 1960s, given a belief that gas should be used only as a premium fuel and in the context of an uncompetitive market. Oil reserves' development and production has suffered from time to time from inappropriate politico-economic conditions. Nevertheless, offshore oil and gas has come to dominate the UK's energy production over the past 20 years and currently accounts for 85% of the country's total energy output. Fears for resources' exhaustion remain unjustified, as the industry continues to replace oil and gas reserves used each year. The North Sea is still not comprehensively explored: the continuation of the process will enable oil production to remain at high levels and that of gas to expand further. Supplementary output from the new west of Shetland province will become progressively more important after 2000. But continued intensive production overall depends on the maintenance of attractive politico-economic conditions and on present oil prices. It also requires the European gas market to remain firm but, ironically, the planned flow of UK gas to the mainland constitutes a threat to this condition.


2008 ◽  
Vol 48 (1) ◽  
pp. 241
Author(s):  
Hilde Engelsen ◽  
Henrik Hannus

Semi-submersible platforms have a long history in the North Sea. In the beginning they were used mainly as mobile offshore drilling units, but in the last two decades the permanently moored semi-submersible production vessels have become widely used both as gas processing units and combination oil and gas production vessels. The design of production semi-submersibles evolved from that of drilling rigs, but there have since been significant improvements to the design of the hull and the topside configuration in relation to operational requirements and construction processes. The design methods have also been successfully adapted to areas with different environmental conditions, in combination with steel catenary risers and polyester mooring systems. On recent designs, simplifications of the hull systems are being implemented, which ease operation and enhance the passive safety. Finally, the semi-submersible production vessel’s application to Australian waters is discussed with focus on topside layout, hull design and mooring system design. Environmental conditions offshore northwest Australia are compared to North Sea and Gulf of Mexico conditions, along with vessel class and regulatory requirements.


Significance While the US oil majors are adopting strategies primarily based on decarbonising oil and gas production, European companies are also developing new businesses designed to compensate for future demand-led reductions in oil and gas revenues. The European majors’ entry into the power sector and renewable energy markets brings new, well-financed and technologically proficient competitors into a sector made up predominantly of utilities and smaller developers. Impacts Hydrocarbon majors' capital spending on renewables will rise over the next decade. The oil majors will continue to buy into promising new energy transition technologies. These companies will invest in oil output and protect their legacy assets, but their valuations will be less driven by their oil reserves.


1991 ◽  
Vol 14 (1) ◽  
pp. 33-42 ◽  
Author(s):  
C. A. Knutson ◽  
I. C. Munro

AbstractThe Beryl Field, the sixth largest oil field in the UK sector of the North Sea, is located within Block 9/13 in the west-central part of the Viking Graben. The block was awarded in 1971 to a Mobil operated partnership and the 9/13-1 discovery well was drilled in 1972. The Beryl A platform was emplaced in 1975 and the Beryl B platform in 1983. To date, ninety-five wells have been drilled in the field, and drilling activity is anticipated into the mid-1990s.Commercial hydrocarbons occur in sandstone reservoirs ranging in age from Upper Triassic to Upper Jurassic. Structurally, the field consists of a NNE orientated horst in the Beryl A area and westward tilted fault blocks in the Beryl B area. The area is highly faulted and complicated by two major and four minor unconformities. The seal is provided by Upper Jurassic shales and Upper Cretaceous marls.There are three prospective sedimentary sections in the Beryl Field ranked in importance as follows: the Middle Jurassic coastal deltaic sediments, the Upper Triassic to Lower Jurassic continental and marine sediments, and the Upper Jurassic turbidites. The total ultimate recovery of the field is about 800 MMBBL oil and 1.6 TCF gas. As of December 1989, the field has produced nearly 430 MMBBL oil (primarily from the Middle Jurassic Beryl Formation), or about 50% of the ultimate recovery. Gas sales are scheduled to begin in the early 1990s. Oil and gas production is forecast until licence expiration in 2018.The Beryl Fields is located 215 miles northeast of Aberdeen, about 7 miles from the United Kingdom-Norwegian boundary. The field lies within Block 9/13 and covers and area of approximately 12 000 acres in water depths ranging from 350-400 ft. Block 9/13 contains several hydrocarbon-bearing structures, of which the Beryl Fields is the largest (Fig. 1). The field is subdivided into two producing areas: the Beryl Alpha area which includes the initial discovery well, and the Beryl Bravo area located to the north. The estimated of oil originally in place is 1400 MMBBL for Beryl A and 700 MMBBL for Beryl B. The fiel has combined gas in place of 2.8 TCF, consisting primarily of solution gas. Hydrocarbon accumulations occur in six reservoir horizons ranging in age from Upper Triassic to Upper Jurassic. The Middle Jurassic (Bathonian to Callovian) age Beryl Formation is the main reservoir unit and contains 78% of the total ultimate recovery.The field was named after Beryl Solomon, the wife of Charles Solomon, who was president of Mobil Europe in 1972 when the field was discovered. The satellite fields in Block 9/13 (Nevis, Ness and Linnhe) are named after Scottish lochs.


Author(s):  
Simone Pedersen ◽  
Rikke Weibel ◽  
Peter N. Johannessen ◽  
Niels H. Schovsbo

Oil and gas production from siliciclastic reservoirs has hitherto been in the Danish Central Graben mostly from Palaeogene and Middle Jurassic sandstone. The Ravn field was the first Upper Jurassic field to start operation. The reservoir is composed of sandstone of the Heno Formation. Production takes place at a depth of 4000 m, which makes Ravn the deepest producing field in the Danish North Sea. The Heno Formation mainly consists of marine shoreface deposits, where foreshore, middle and lower shoreface sandstones constitute the primary reservoir. The results of this study of the diagenetic impact on the mineralogical composition, porosity and permeability are presented here. Microcrystalline quartz has preserved porosity in the sandstone, whereas illite, quartz overgrowth and carbonate cement have reduced both porosity and permeability.


1992 ◽  
pp. 13-21 ◽  
Author(s):  
R. P. W. M. Jacobs ◽  
R. O. H. Grant ◽  
J. Kwant ◽  
J. M. Marquenie ◽  
E. Mentzer

2019 ◽  
Author(s):  
Stuart N. Riddick ◽  
Denise L. Mauzerall ◽  
Michael Celia ◽  
Neil R. P. Harris ◽  
Grant Allen ◽  
...  

Abstract. Recent studies suggest oil and natural gas production facilities in North America may be underestimating methane (CH4) emissions during extraction. This, coupled with unusually high CH4 mole fractions observed at coastal sites during onshore winds in the UK, suggests CH4 emissions from oil and gas extraction activities in the North Sea could be higher than previously reported. To investigate if these coastal CH4 enhancements could have come from oil and gas production platforms, we use near-source measurement techniques to estimate CH4 emissions from eight oil and gas production platforms in the North Sea. We estimate the mean CH4 emission from the eight platforms to be 10.1 g CH4 s−1, with a range of 1.1 to 25.0 g CH4 s−1. When matched to production records, individual platforms lose between 0.01 % and 1.58 % of gas production with an average loss of 0.61 % of gas production. However, when the measured platforms are considered collectively, i.e. when the total measured emission is compared to total production of the platforms measured, the CH4 loss is estimated at 0.27 % of gas production. These calculated ranges are at least double the most recently reported loss rates for these platforms, which are currently estimated at 0.13 % of gas production. In fact, the vast majority of reported emissions are due to gas flaring and offshore oil loading, neither of which was taking place at the time of these measurements. If emissions measured here resulted from leakage during normal operation, they represent significant additional emissions (at least 0.27 % of production) above previous estimates of CH4 leakage from off-shore oil and gas production platforms. These emissions are not explicitly included in UK emission inventories. Further research to determine CH4 leakage from all operations occurring at off-shore oil and gas platforms, and how to include them in national emission inventories, is needed.


Sign in / Sign up

Export Citation Format

Share Document