A novel focal-loss and class-weight-aware convolutional neural network for the classification of in-text citations

2021 ◽  
pp. 016555152199102
Author(s):  
Naif Radi Aljohani ◽  
Ayman Fayoumi ◽  
Saeed-Ul Hassan

We argue that citations, as they have different reasons and functions, should not all be treated in the same way. Using the large, annotated dataset of about 10K citation contexts annotated by human experts, extracted from the Association for Computational Linguistics repository, we present a deep learning–based citation context classification architecture. Unlike all existing state-of-the-art feature-based citation classification models, our proposed convolutional neural network (CNN) with fastText-based pre-trained embedding vectors uses only the citation context as its input to outperform them in both binary- (important and non-important) and multi-class (Use, Extends, CompareOrContrast, Motivation, Background, Other) citation classification tasks. Furthermore, we propose using focal-loss and class-weight functions in the CNN model to overcome the inherited class imbalance issues in citation classification datasets. We show that using the focal-loss function with CNN adds a factor of [Formula: see text] to the cross-entropy function. Our model improves on the baseline results by achieving an encouraging 90.6 F1 score with 90.7% accuracy and a 72.3 F1 score with a 72.1% accuracy score, respectively, for binary- and multi-class citation classification tasks.

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Jian-ye Yuan ◽  
Xin-yuan Nan ◽  
Cheng-rong Li ◽  
Le-le Sun

Considering that the garbage classification is urgent, a 23-layer convolutional neural network (CNN) model is designed in this paper, with the emphasis on the real-time garbage classification, to solve the low accuracy of garbage classification and recycling and difficulty in manual recycling. Firstly, the depthwise separable convolution was used to reduce the Params of the model. Then, the attention mechanism was used to improve the accuracy of the garbage classification model. Finally, the model fine-tuning method was used to further improve the performance of the garbage classification model. Besides, we compared the model with classic image classification models including AlexNet, VGG16, and ResNet18 and lightweight classification models including MobileNetV2 and SuffleNetV2 and found that the model GAF_dense has a higher accuracy rate, fewer Params, and FLOPs. To further check the performance of the model, we tested the CIFAR-10 data set and found the accuracy rates of the model (GAF_dense) are 0.018 and 0.03 higher than ResNet18 and SufflenetV2, respectively. In the ImageNet data set, the accuracy rates of the model (GAF_dense) are 0.225 and 0.146 higher than Resnet18 and SufflenetV2, respectively. Therefore, the garbage classification model proposed in this paper is suitable for garbage classification and other classification tasks to protect the ecological environment, which can be applied to classification tasks such as environmental science, children’s education, and environmental protection.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Qiang Cai ◽  
Fenghai Li ◽  
Yifan Chen ◽  
Haisheng Li ◽  
Jian Cao ◽  
...  

Along with the strong representation of the convolutional neural network (CNN), image classification tasks have achieved considerable progress. However, majority of works focus on designing complicated and redundant architectures for extracting informative features to improve classification performance. In this study, we concentrate on rectifying the incomplete outputs of CNN. To be concrete, we propose an innovative image classification method based on Label Rectification Learning (LRL) through kernel extreme learning machine (KELM). It mainly consists of two steps: (1) preclassification, extracting incomplete labels through a pretrained CNN, and (2) label rectification, rectifying the generated incomplete labels by the KELM to obtain the rectified labels. Experiments conducted on publicly available datasets demonstrate the effectiveness of our method. Notably, our method is extensible which can be easily integrated with off-the-shelf networks for improving performance.


Author(s):  
Truong Quang Vinh ◽  
Dinh Viet Hai

Convolutional neural network (CNN) is one of the most promising algorithms that outweighs other traditional methods in terms of accuracy in classification tasks. However, several CNNs, such as VGG, demand a huge computation in convolutional layers. Many accelerators implemented on powerful FPGAs have been introduced to address the problems. In this paper, we present a VGG-based accelerator which is optimized for a low-cost FPGA. In order to optimize the FPGA resource of logic element and memory, we propose a dedicated input buffer that maximizes the data reuse. In addition, we design a low resource processing engine with the optimal number of Multiply Accumulate (MAC) units. In the experiments, we use VGG16 model for inference to evaluate the performance of our accelerator and achieve a throughput of 38.8[Formula: see text]GOPS at a clock speed of 150[Formula: see text]MHz on Intel Cyclone V SX SoC. The experimental results show that our design is better than previous works in terms of resource efficiency.


Sign in / Sign up

Export Citation Format

Share Document