Exacerbation of Background Nuclear Cataracts in Sprague-Dawley Rats in Embryo-Fetal Development Studies With JNJ-42165279, a Fatty Acid Amide Hydrolase Inhibitor

2021 ◽  
pp. 019262332110104
Author(s):  
Marjolein van Heerden ◽  
Wendy Roosen ◽  
Sophie Lachau-Durand ◽  
Graham Bailey ◽  
Anthony Ndifor

Fetal examinations in embryo-fetal developmental (EFD) studies are based on macroscopic and dissecting microscopic evaluations, and histopathology is rarely performed other than to confirm macroscopic findings. Fetal lens examination is therefore generally limited to the presence, size, shape, and color of any abnormality. In a Sprague-Dawley rat EFD study with the fatty acid amide hydrolase (FAAH) inhibitor JNJ-42165279, an unusually high incidence of macroscopic granular foci was noted within the lens of gestation day 21 fetuses across all groups including controls, with higher incidence in the high-dose group. On histological evaluation of the lenses from fetuses with/without gross findings, primary lens fiber hypertrophy (swelling) and degeneration were observed across vehicle- and JNJ-42165279-exposed fetuses. In a follow-up study to investigate the progression or resolution of the fetal lens changes, animals exposed to suprapharmacological doses of JNJ-42165279 in utero had higher incidence of nuclear cataracts as detected via slit-lamp ophthalmic examinations on postnatal days 18 to 21 and 35 to 41. No histologic correlates for these cataracts were identified. We conclude that fetal primary lens fiber hypertrophy and nuclear cataracts at ophthalmology, are common background changes in this rat strain that are exacerbated by in utero exposure to the FAAH inhibitor JNJ-42165279.

2008 ◽  
Vol 295 (5) ◽  
pp. R1409-R1414 ◽  
Author(s):  
Nicholas V. DiPatrizio ◽  
Kenny J. Simansky

These studies investigated feeding responses to indirect activation of parabrachial cannabinoid CB1 receptors. Arachidonoyl serotonin (AA5HT), an inhibitor of the endocannabinoid degradative enzyme, fatty acid amide hydrolase (FAAH), was infused into the parabrachial nucleus of male Sprague-Dawley rats, and intakes of high-fat/sucrose pellets and standard rodent chow were subsequently evaluated under various feeding schedules. FAAH blockade stimulated the intake of high-fat/sucrose pellets that were presented daily for 4 h during the light period, with compensatory decreases in the consumption of standard chow during the ensuing 20 h. These diet-selective changes were repeated on the next day, indicating a shift in feeding toward the more palatable diet that lasted for 48 h after a single infusion. The cannabinoid CB1 receptor antagonist, AM251, blocked the orexigenic actions of AA5HT, implicating CB1 receptors in mediating the feeding responses to FAAH inactivation. When the feeding schedule was reversed, AA5HT produced nominal increases in the consumption of standard chow for the 4-h access period, but substantial increases in the intake of high-fat/sucrose during the following 20-h interval. When presented with only high-fat/sucrose diet for 24 h, AA5HT increased 24-h food intake. In contrast, when given 24-h access only to standard chow, AA5HT failed to affect intake. Therefore, indirectly activating parabrachial CB1 receptors by blocking the degradation of native ligands selectively stimulates the intake of palatable food, with differential actions on total energy intake depending upon the feeding schedule. Our results support a role for parabrachial cannabinoid mechanisms in providing physiological regulation to neural substrates modulating feeding, energy balance, and behavioral responses for natural reward.


2007 ◽  
Vol 52 (4) ◽  
pp. 1095-1105 ◽  
Author(s):  
Di Zhang ◽  
Anita Saraf ◽  
Teodozyi Kolasa ◽  
Pramila Bhatia ◽  
Guo Zhu Zheng ◽  
...  

2019 ◽  
Vol 85 (10) ◽  
pp. S376
Author(s):  
Esmaeil Mansouri ◽  
Rachel F. Tyndale ◽  
Christian S. Hendershot ◽  
Laura M. Best ◽  
Patricia Di Ciano ◽  
...  

2013 ◽  
Vol 33 (2) ◽  
pp. 215-223 ◽  
Author(s):  
Sébastien Lenglet ◽  
Aurélien Thomas ◽  
Oliver Soehnlein ◽  
Fabrizio Montecucco ◽  
Fabienne Burger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document