Mitochondria-Targeted Antioxidant Mitoquinone Reduces Cisplatin-Induced Ototoxicity in Guinea Pigs

2016 ◽  
Vol 156 (3) ◽  
pp. 543-548 ◽  
Author(s):  
Alan D. Tate ◽  
Patrick J. Antonelli ◽  
Kyle R. Hannabass ◽  
Carolyn O. Dirain

Objective To determine if mitoquinone (MitoQ) attenuates cisplatin-induced hearing loss in guinea pigs. Study Design Prospective and controlled animal study. Setting Academic, tertiary medical center. Subjects and Methods Guinea pigs were injected subcutaneously with either 5 mg/kg MitoQ (n = 9) or normal saline (control, n = 9) for 7 days and 1 hour before receiving a single dose of 10 mg/kg cisplatin. Auditory brainstem response thresholds were measured before MitoQ or saline administration and 3 to 4 days after cisplatin administration. Results Auditory brainstem response threshold shifts after cisplatin treatment were smaller by 28 to 47 dB in guinea pigs injected with MitoQ compared with those in the control group at all tested frequencies (4, 8, 16, and 24 kHz, P = .0002 to .04). Scanning electron microscopy of cochlear hair cells showed less outer hair cell loss and damage in the MitoQ group. Conclusion MitoQ reduced cisplatin-induced hearing loss in guinea pigs. MitoQ appears worthy of further investigation as a means of preventing cisplatin ototoxicity in humans.

2003 ◽  
Vol 14 (03) ◽  
pp. 124-133 ◽  
Author(s):  
Kathleen C.M. Campbell ◽  
Deb L. Larsen ◽  
Robert P. Meech ◽  
Leonard P. Rybak ◽  
Larry F. Hughes

Glutathione (GSH) provides an important antioxidant and detoxification pathway. We tested to determine if direct administration of GSH or GSH ester could reduce cisplatin- (CDDP) induced ototoxicity. We tested eight groups of five rats each: a control group, a group receiving 16 mg/kg ip CDDP infused over 30 minutes, and six groups receiving either GSH or GSH ester at 500, 1000, or 1500 mg/kg intraperitoneally 30 minutes prior to 16 mg/kg CDDP. Auditory brainstem response thresholds were measured for click and tone-burst stimuli at baseline and 3 days later. Outer hair cell (OHC) loss was measured for the apical, middle and basal turns. The 500 mg/kg GSH ester reduced hearing loss and OHC loss, but protection decreased as dosage increased, suggesting possible toxicity. GSH was not significantly protective. The best GSH ester protection was less than we have previously reported with D-methionine. El glutatión (GSH) brinda una importante vía antioxidante y de cetoxificación. Realizamos una prueba para determinar si la administración directa de GSH o del éster de GSH podía reducir la ototoxicidad inducida por cisplatino (CDDP). Hicimos una evaluación en ocho grupos de cinco ratas cada uno: un grupo control, un grupo que recibió CDDP intraperitoneal a 16 mg/kg en una ínfusión durante 30 minutos y seis grupos que recibieron intraperitonealmente GSH o el éster de GSH a 500, 1000 o 1500 mg/kg, 30 minutos antes del CDDP a 16 mg/kg. Se midieron umbrales de respuestas auditivas del tallo cerebral tanto para clicks como para bursts tonales, al inicio y 3 días después. La pérdida de células ciliadas externas (OHC) fue establecida a nivel de las vueltas apical, media y basal. La dosis de 500 mg/kg de éster de GSH redujo la hipoacusia y la pérdida de OHC, pero la protección disminuyó conforme la dosis se incrementó, sugiriendo una posible toxicidad. EL GSH no resultó significativamente protector. El mejor efecto protector del éster de GSH fue menor que el previamente reportado con D-Metionina.


2003 ◽  
Vol 14 (03) ◽  
pp. 134-143 ◽  
Author(s):  
James J. Klemens ◽  
Robert P. Meech ◽  
Larry F. Hughes ◽  
Satu Somani ◽  
Kathleen C.M. Campbell

This study's purpose was to determine if a correlation exists between cochlear antioxidant activity changes and auditory function after induction of aminoglycoside (AG) ototoxicity. Two groups of five 250-350 g albino guinea pigs served as subjects. For 28 days, albino guinea pigs were administered either 200 mg/kg/day amikacin, or saline subcutaneously. Auditory brainstem response testing was performed prior to the first injection and again before sacrifice, 28 days later. Cochleae were harvested and superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, glutathione reductase activities and malondialdehyde levels were measured. All antioxidant enzymes had significantly lower activity in the amikacin group (p ≤ 0.05) than in the control group. The difference in cochlear antioxidant enzyme activity between groups inversely correlated significantly with the change in ABR thresholds. The greatest correlation was for the high frequencies, which are most affected by aminoglycosides. This study demonstrates that antioxidant enzyme activity and amikacin-induced hearing loss significantly covary.


2020 ◽  
Vol 25 (6) ◽  
pp. 336-344
Author(s):  
Jingqian Tan ◽  
Jia Luo ◽  
Xin Wang ◽  
Yanbing Jiang ◽  
Xiangli Zeng ◽  
...  

<b><i>Introduction:</i></b> Auditory brainstem response (ABR) is one of the commonly used methods in clinical settings to evaluate the hearing sensitivity and auditory function. The current ABR measurement usually adopts click sound as the stimuli. However, there may be partial ABR amplitude attenuation due to the delay characteristics of the cochlear traveling wave along the basilar membrane. To solve that problem, a swept-tone method was proposed, in which the show-up time of different frequency components was adjusted to compensate the delay characteristics of the cochlear basilar membrane; therefore, different ABR subcomponents of different frequencies were synchronized. <b><i>Methods:</i></b> The normal hearing group, moderate sensorineural hearing loss group, and severe sensorineural hearing loss group underwent click ABR and swept-tone ABR with different stimulus intensities. The latencies and amplitudes of waves I, III, and V in 2 detections were recorded. <b><i>Results:</i></b> It was found that the latency of each of the recorded I, III, and V waves detected by swept-tone ABR was shorter than that by click ABR in both the control group and experimental groups. In addition, the amplitude of each of the recorded I, III, and V waves, except V waves under 60 dB nHL in the moderate sensorineural hearing loss group, detected by swept-tone ABR was larger than that by click ABR. The results also showed that the swept-tone ABR could measure the visible V waves at lower stimulus levels in the severe sensorineural hearing loss group. <b><i>Conclusion:</i></b> Swept-tone improves the ABR waveforms and helps to obtain more accurate threshold to some extent. Therefore, the proposed swept-tone ABR may provide a new solution for better morphology of ABR waveform, which can help to make more accurate diagnosis about the hearing functionality in the clinic.


2021 ◽  
Vol 35 ◽  
pp. 205873842110340
Author(s):  
Jie Wang ◽  
Ke-yong Tian ◽  
Ying Fang ◽  
Hui-min Chang ◽  
Ya-nan Han ◽  
...  

Introduction Cruciferous vegetables are a rich source of sulforaphane (SFN), which acts as a natural HDAC inhibitor (HDACi). Our previous study found that HDACi could restore histone acetyltransferase/histone deacetylase (HAT/HDAC) balance in the cochlea and attenuate gentamicin-induced hearing loss in guinea pigs. Here, we investigated the protective effect of SFN on cisplatin-induced hearing loss (CIHL). Methods Thirty rats were randomly divided into 3 equal groups: the control group, cisplatin group, and SFN+cisplatin group. Rats were injected with SFN (30 mg/kg once a day) and cisplatin (7 mg/kg twice a day) for 7 days to investigate the protective role of SFN on CIHL. We observed auditory brainstem response (ABR) threshold shifts and immunostained cochlear basilar membranes of rats. For in vitro experiments, we treated HEI-OC1 cells and rat cochlear organotypic cultures with SFN (5, 10, and 15 μM) and cisplatin (10 μM). Immunofluorescence, cell viability, and protein analysis were performed to further analyze the protective mechanism of SFN on CIHL. Results SFN (30 mg/kg once a day) decreased cisplatin (7 mg/kg twice a day)-induced ABR threshold shifts and outer hair cell loss. CCK-8 assay showed that cisplatin (10 μM) reduced the viability of HEI-OC1 cells to 42%, and SFN had a dose-dependent protective effect. In cochlear organotypic cultures, we found that SFN (10 and 15 μM) increased cisplatin (10 μM)-induced myosin 7a+ cell count and restored ciliary morphology. SFN (5, 10, and 15 μM) reversed the cisplatin (10 μM)-induced increase in HDAC2, -4, and -5 and SFN (15 μM) reversed the cisplatin (10 μM)-induced decrease in H3-Ack9 [acetyl-histone H3 (Lys9)] protein expression in HEI-OC1 cells. Neither cisplatin nor cisplatin combined with SFN affected the expression of HDAC7, or HDAC9. Conclusion SFN prevented disruption of the HAT/HDAC balance, protecting against CIHL in rats.


2021 ◽  
pp. 1-13
Author(s):  
Selis Gulseven Guven ◽  
Onur Ersoy ◽  
Ruhan Deniz Topuz ◽  
Erdoğan Bulut ◽  
Gulnur Kizilay ◽  
...  

<b><i>Introduction:</i></b> The effect of orally consumed monosodium glutamate (MSG), which is a common additive in the food industry, on the cochlea has not been investigated. The present study aimed to investigate the possible cochleotoxic effects of oral MSG in guinea pigs using electrophysiological, biochemical, and histopathological methods. <b><i>Methods:</i></b> Thirty guinea pigs were equally divided into control and intervention groups (MSG 100 mg/kg/day; MSG 300 mg/kg/day). At 1 month, 5 guinea pigs from each group were sacrificed; the rest were observed for another month. Electrophysiological measurements (distortion product otoacoustic emission [DPOAE] and auditory brainstem response [ABR]), glutamate levels in the perilymph and blood samples, and histopathological examinations were evaluated at 1 and 2 months. <b><i>Results:</i></b> Change in signal-to-noise ratio at 2 months was significantly different in the MSG 300 group at 0.75 kHz and 2 kHz (<i>p</i> = 0.013 and <i>p</i> = 0.044, respectively). There was no statistically significant difference in ABR wave latencies of the guinea pigs given MSG compared to the control group after 1 and 2 months; an increase was noted in ABR thresholds, although the difference was not statistically significant. In the MSG groups, moderate-to-severe degeneration and cell loss in outer hair cells, support cells, and spiral ganglia, lateral surface junction irregularities, adhesions in stereocilia, and partial loss of outer hair cell stereocilia were noted. <b><i>Conclusion:</i></b> MSG, administered in guinea pigs at a commonly utilized quantity and route of administration in humans, may be cochleotoxic.


2003 ◽  
Vol 14 (03) ◽  
pp. 144-156 ◽  
Author(s):  
Kathleen C.M. Campbell ◽  
Robert P. Meech ◽  
Leonard P. Rybak ◽  
Larry F. Hughes

D-methionine (D-met) protects against cisplatin (CDDP) ototoxicity, but the mechanisms are not well understood. This study investigated D-met protection of cochlear oxidative state as measured by superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR), and malondiadehyde (MDA) levels. The design comprised four groups of five rats each: (1) a saline control group, (2) a CDDP-only-treated group, (3) a CDDP group pretreated with D-met, and (4) a group receiving only D-met. Auditory brainstem response testing (ABR) was performed before and 3 days after injection. CDDP alone caused marked hearing loss; significantly reduced SOD, CAT, and GR levels; and increased MDA levels, but D-met pretreatment protected against these changes. These studies suggest that D-met protects cochlear antioxidant enzyme levels from CDDP-induced decrements. The excellent correlation of enzyme levels with hearing loss and weight loss suggests that antioxidant enzyme level protection may underlie, at least in part, D-met's otoprotective action.


Sign in / Sign up

Export Citation Format

Share Document