The Haemocompatibility of Biomaterials In Vitro: Investigations on the Mechanism of the Whole-blood Clot Formation Test

1992 ◽  
Vol 20 (3) ◽  
pp. 390-395 ◽  
Author(s):  
Thomas Groth ◽  
Katrin Derdau ◽  
Frank Strietzel ◽  
Frank Foerster ◽  
Hartmut Wolf

Twenty years ago Imai & Nose introduced a whole-blood clotting test for the estimation of haemocompatibility of biomaterials in vitro In our paper a modification of this assay is described and the mechanism of clot formation further elucidated. It was found that neither the inhibition of platelet function nor the removal of platelets from blood significantly changed the clot formation rate on glass and polyvinyl chloride in comparison to the rate tor whole blood. Scanning electron microscopy demonstrated that platelets were not involved in clot formation near the blood/biomaterial interface. Thus, it was concluded that the system of contact activation of the coagulation cascade dominates during clot formation under static conditions. The latter conclusion was supported by the fact that preadsorption of human serum albumin or human fibrinogen onto the glass plates used, decreased the clot formation rate in the same manner.

2017 ◽  
Vol 23 (3) ◽  
pp. 607-617 ◽  
Author(s):  
Albe C. Swanepoel ◽  
Odette Emmerson ◽  
Etheresia Pretorius

AbstractCombined oral contraceptive (COC) use is a risk factor for venous thrombosis (VT) and related to the specific type of progestin used. VT is accompanied by inflammation and pathophysiological clot formation, that includes aberrant erythrocytes and fibrin(ogen) interactions. In this paper, we aim to determine the influence of progesterone and different synthetic progestins found in COCs on the viscoelasticity of whole blood clots, as well as erythrocyte morphology and membrane ultrastructure, in an in vitro laboratory study. Thromboelastography (TEG), light microscopy, and scanning electron microscopy were our chosen methods. Our results point out that progestins influence the rate of whole blood clot formation. Alterations to erythrocyte morphology and membrane ultrastructure suggest the presence of eryptosis. We also note increased rouleaux formation, erythrocyte aggregation, and spontaneous fibrin formation in whole blood which may explain the increased risk of VT associated with COC use. Although not all COC users will experience a thrombotic event, individuals with a thrombotic predisposition, due to inflammatory or hematological illness, should be closely monitored to prevent pathological thrombosis.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4961-4961
Author(s):  
Johannes Thaler ◽  
Lena Hell ◽  
Lukas Wisgrill ◽  
Andreas Spittler ◽  
Michael Schwameis ◽  
...  

Abstract Background: The pathomechanisms underlying disseminated intravascular coagulation (DIC) following amniotic fluid (AF) embolism remain to be fully elucidated. Highly procoagulant phosphatidylserine (PS)- and tissue factor (TF) expressing extracellular vesicles (EVs) might play a central role. Objective: To perform extensive analyses of the procoagulant properties of AF with a panel of functional coagulation assays and flow cytometry to investigate the pathogenesis of AF induced DIC. Methods: A prothrombinase assay, an EV-TF dependent factor Xa (FXa) generation assay, a modified thrombin- and fibrin-generation assay, a whole blood clotting model and flow cytometry were applied in AF- and control plasma. Results: Phosphatidylserine expression was 21-fold increased in AF compared to plasma. Factor Xa generation was extremely high when TF-expressing EVs from AF were co-incubated with recombinant FVIIa. In the thrombin- and fibrin generation assay AF-derived EVs strongly activated the blood coagulation cascade via PS and TF. In a whole blood clotting model AF-derived TF-expressing EVs significantly shortened the clotting time from 734 ± 139 seconds in the presence- to 232 ± 139 seconds in the absence of an anti-TF antibody. The contact activation pathway via factor FXII was not affected. Applying flow cytometry, a sub-population of PS- and TF co-expressing EVs was clearly identified in AF. Conclusions: We thoroughly investigated the effect of AF on blood coagulation and found that PS+ and TF+ EVs determine its procoagulant potential. Taken together our data further delineate the pathomechanisms underlying AF-induced coagulopathy, which could improve diagnostic- and treatment modalities. Disclosures No relevant conflicts of interest to declare.


1962 ◽  
Vol 203 (6) ◽  
pp. 1170-1172 ◽  
Author(s):  
Koji Sato ◽  
Kazutaka Homma ◽  
Jiro Gotoh

Phosvitin, a phosphoprotein isolated from the vitellin of egg yolk, prolonged the whole blood clotting time in the chicken blood in vitro. The degree of phosvitin's inhibition of coagulation was inversely related to the level of egg-yolk-like material in plasma induced by estrogen.


1994 ◽  
Vol 8 ◽  
pp. 43
Author(s):  
M. Colucci ◽  
S. Scopece ◽  
A. Gelato ◽  
L.G. Cavallo ◽  
N. Semeraro

Blood ◽  
2002 ◽  
Vol 100 (3) ◽  
pp. 743-754 ◽  
Author(s):  
Robert A. S. Ariëns ◽  
Thung-Shenq Lai ◽  
John W. Weisel ◽  
Charles S. Greenberg ◽  
Peter J. Grant

Abstract Factor XIII and fibrinogen are unusual among clotting factors in that neither is a serine protease. Fibrin is the main protein constituent of the blood clot, which is stabilized by factor XIIIa through an amide or isopeptide bond that ligates adjacent fibrin monomers. Many of the structural and functional features of factor XIII and fibrin(ogen) have been elucidated by protein and gene analysis, site-directed mutagenesis, and x-ray crystallography. However, some of the molecular aspects involved in the complex processes of insoluble fibrin formation in vivo and in vitro remain unresolved. The findings of a relationship between fibrinogen, factor XIII, and cardiovascular or other thrombotic disorders have focused much attention on these 2 proteins. Of particular interest are associations between common variations in the genes of factor XIII and altered risk profiles for thrombosis. Although there is much debate regarding these observations, the implications for our understanding of clot formation and therapeutic intervention may be of major importance. In this review, we have summarized recent findings on the structure and function of factor XIII. This is followed by a review of the effects of genetic polymorphisms on protein structure/function and their relationship to disease.


2009 ◽  
Vol 109 (4) ◽  
pp. 1023-1028 ◽  
Author(s):  
Csilla Jámbor ◽  
Viviane Reul ◽  
Thomas W. Schnider ◽  
Priska Degiacomi ◽  
Hubert Metzner ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4038-4038
Author(s):  
Meera Chitlur ◽  
Erin Ware ◽  
Sujata Kannan ◽  
Wendy Hollon ◽  
Steve Buck ◽  
...  

Abstract Dendritic polymers are branched nanopolymers with a central core and multiple peripheral functional groups that offer great potential as high payload delivery vehicles carrying multiple copies of drug molecules, targeting ligands and imaging agents to their site of action. Their nanoscopic dimensions offer exciting possibilities for achieving high intracellular drug concentrations in many therapeutic areas including anti-cancer drug delivery. Biocompatibility and biodistribution of dendritic polymers may be influenced by surface charge and concentration. One of the major challenges in their use is the effect on coagulation. The objective of this study was to determine the effect of change in surface charge and concentration of dendritic polymer on cellular and enzymatic components of coagulation. Materials and Methods: The effect of increasing concentrations (1, 10, 100, and 1000mcg/ml) of polyamidoamine (PAMAM) dendrimers with -COOH (anionic), -OH (neutral), and -NH2 (cationic) end functionalities, on platelet function and coagulation was evaluated using thromboelastography, whole blood aggregation, and flow cytometry. The thromboelastographic profile and platelet aggregation studies were obtained on samples of whole blood incubated for thirty minutes with dendrimer. Platelets were incubated with FITC labelled dendrimer for 30,60 and 120 mins, to determine uptake and platelet activation using flow cytometry. All tests were performed in triplicate. RESULTS: Thromboelastography: No significant effect on clot formation (time to clot formation and size) was seen with PAMAM-COOH (COOH) or PAMAM-OH (OH). Prolonged time to initiation of clot and decreased size were noted with 100 and 1000mcg/ml of PAMAM-NH2(NH2) as shown in figure1, indicating impairment of both the enzymatic and cellular components of the coagulation system. Whole Blood Aggregation: Neither platelet aggregation nor secretion were significantly affected by COOH or OH. Platelet aggregation was significantly decreased with NH2 at 100 and 1000mcg/ml. Flow Cytometry: Spontaneous CD62 activation was seen in platelets incubated with NH2. No spontaneous CD62 activation was noted with COOH or OH even at 1000mcg/ml. Platelet uptake of FITC labeled dendrimer was assessed at 30, 60 and 120mins of incubation. Increased uptake of FITC labeled dendrimer was noted at 2 hours with NH2. TEG clotting Profiles with PAMAM-NH2. TEG clotting Profiles with PAMAM-NH2. CONCLUSIONS: Surface charge of the dendritic nanopolymers plays a significant role on its effect on coagulation and platelet function. The anionic -COOH terminated and neutral -OH terminated dendrimers had no effect on hemostasis even at the highest concentrations while the cationic-NH2 was associated with inhibition of platelet aggregation and delayed clot initiation at higher concentrations. This would indicate that the anionic and neutral dendrimers would serve as better vehicles than cationic dendrimers for targeted delivery of therapeutic agents.


1998 ◽  
Vol 79 (03) ◽  
pp. 539-542 ◽  
Author(s):  
José Donato ◽  
Ronilson Moreno ◽  
Stephen Hyslop ◽  
Alaor Duarte ◽  
Edson Antunes ◽  
...  

SummaryIn southern Brazil, envenomation by larvae of the moth Lonomia obliqua (Walker) may result in blood clotting factor depletion, leading to disseminated intravascular coagulation with subsequent haemorrhage and acute renal failure which may prove fatal. We have examined the effect of a crude extract of spicules from these caterpillars on in vitro hemostasis. The extract alone did not aggregate platelets and had no detectable effect on purified fibrinogen, suggesting that extract induces clot formation by triggering activation of the clotting cascade. In agreement with the presence of thrombin-mediated activity, hirudin prevented clot formation. The extract was found to activate both prothrombin and factor X, suggesting that the depletion of blood clotting factors results from the steady activation of factor X and prothrombin. Heating and diisopropylfluorophosphate abolished the procoagulant activity of the extract, indicating that the active component involved is a protein that may belong to the serine protease family of enzymes. The ability of hirudin to inhibit this coagulant activity suggests that this inhibitor could be beneficial in the treatment of patients envenomed by L. obliqua caterpillars.


1998 ◽  
Vol 86 (Supplement) ◽  
pp. 70S
Author(s):  
&NA; Inchiosa ◽  
S Pothula ◽  
G. Chang ◽  
VT Sanchala
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document