scholarly journals Intracranial stenosis in cognitive impairment and dementia

2016 ◽  
Vol 37 (6) ◽  
pp. 2262-2269 ◽  
Author(s):  
Saima Hilal ◽  
Xin Xu ◽  
M Kamran Ikram ◽  
Henri Vrooman ◽  
Narayanaswamy Venketasubramanian ◽  
...  

Intracranial stenosis is a common vascular lesion observed in Asian and other non-Caucasian stroke populations. However, its role in cognitive impairment and dementia has been under-studied. We, therefore, examined the association of intracranial stenosis with cognitive impairment, dementia and their subtypes in a memory clinic case-control study, where all subjects underwent detailed neuropsychological assessment and 3 T neuroimaging including three-dimensional time-of-flight magnetic resonance angiography. Intracranial stenosis was defined as ≥50% narrowing in any of the intracranial arteries. A total of 424 subjects were recruited of whom 97 were classified as no cognitive impairment, 107 as cognitive impairment no dementia, 70 vascular cognitive impairment no dementia, 121 Alzheimer’s Disease, and 30 vascular dementia. Intracranial stenosis was associated with dementia (age/gender/education – adjusted odds ratios (OR): 4.73, 95% confidence interval (CI): 1.93–11.60) and vascular cognitive impairment no dementia (OR: 3.98, 95% CI: 1.59–9.93). These associations were independent of cardiovascular risk factors and MRI markers. However, the association with Alzheimer’s Disease and vascular dementia became attenuated in the presence of white matter hyperintensities. Intracranial stenosis is associated with vascular cognitive impairment no dementia independent of MRI markers. In Alzheimer’s Disease and vascular dementia, this association is mediated by cerebrovascular disease. Future studies focusing on perfusion and functional markers are needed to determine the pathophysiological mechanism(s) linking intracranial stenosis and cognition so as to identify treatment strategies.

Author(s):  
Hugh Markus ◽  
Anthony Pereira ◽  
Geoffrey Cloud

Patients with cerebrovascular disease can develop dementia in the absence of stroke symptoms or as a consequence to stroke. In this chapter, concepts, classification, and definitions of vascular dementia are outlined with a discussion of the overlap between vascular dementia and Alzheimer's disease. Investigation of the vascular dementia patient for treatable causes and to inform management is discussed as there are sections on therapy, promoting independence, and assessments of mental capacity. Depression is common in vascular dementia and a section is dedicated to the assessment and management of this. The concept of mild vascular cognitive impairment is also discussed.


2012 ◽  
Vol 25 (1) ◽  
pp. 167-168 ◽  
Author(s):  
Christine E. Gould ◽  
Sherry A. Beaudreau ◽  
Huma Salman

Individuals with diabetes mellitus have a 1.39 times increased risk of Alzheimer's disease, a 2.38 times increased risk of vascular dementia, and a faster rate of cognitive decline compared to individuals without diabetes (Lu et al., 2009). In a study, over a 9-year follow-up diabetes was associated with accelerated progression from mild cognitive impairment (MCI) to dementia, but was not associated with progression from no impairment to MCI (Xu et al., 2010). Many previous studies on cognitive impairment and diabetes are limited by the use of cognitive screens to diagnose and assess cognitive impairment. A few studies diagnosing cognitive impairment with comprehensive neuropsychological batteries provide mixed results. For instance, Luchinger et al. (2007) found that diabetes was correlated with the presence of MCI, whereas diabetes was not associated with the presence of dementia versus no dementia in the Aging, Demographics, and Memory Study ADAMS; (Llewellyn et al., 2010).


2020 ◽  
Vol 45 (2) ◽  
Author(s):  
Arpita Chakraborty ◽  
Samir Kumar Praharaj ◽  
R. V. Krishnananda Prabhu ◽  
M. Mukhyaprana Prabhu

AbstractBackgroundMore than half portion of the brain is formed by lipids. They play critical roles in maintaining the brain's structural and functional components. Any dysregulation in these brain lipids can lead to cognitive dysfunction which are associated with neurological disorders such as Alzheimer's disease, Parkinson's disease, schizophrenia, vascular dementia etc. Studies have linked lipids with cognitive impairment. But not much has been studied about the complex brain lipids which might play a pivotal role in cognitive impairment. This review aims to highlight the lipidomic profiles in patients with cognitive dysfunction.ResultsForty-five articles were reviewed. These studies show alterations in complex lipids such as sphingolipids, phospholipids, glycolipids and sterols in brain in various neurological disorders such as vascular dementia, Parkinson's and Alzheimer's disease. However, the classes of fatty acids in these lipids involved are different across studies.ConclusionsThere is a need for targeted lipidomics analysis, specifically including sphingolipids in patients with neurodegenerative disorders so as to improve diagnostics as well as management of these disorders.


Author(s):  
Francis Cambronero ◽  
Angela L. Jefferson

Hemodynamic impairment is a prominent feature in aging, vascular cognitive impairment and dementia, and Alzheimer’s disease, including patterned changes in cerebral blood flow (CBF) that can be detected prior to concomitant pathologies. These CBF abnormalities drive vascular dysfunction through a variety of biological pathways and ultimately contribute to cerebrovascular disease associated with cognitive impairment. Importantly, the co-existence of cerebrovascular disease and Alzheimer’s disease is exceedingly common and worsens the progression of clinical symptoms, likely through accelerating neurotoxic protein deposition and the loss of cerebrovascular integrity. Emerging evidence further suggests that the brain may be more susceptible to subclinical cardiovascular dysfunction in aging adults, particularly since the accumulation of cardiovascular risk factors over the lifespan creates a more vulnerable vascular system. Although age-associated CBF dysregulation has varied and complex origins, it undoubtedly serves a critical role in the early progression of neurodegenerative disease and may help explain the considerable overlap between the most common clinical dementias.


Sign in / Sign up

Export Citation Format

Share Document