Conservative Congruence Transformation for Joint and Cartesian Stiffness Matrices of Robotic Hands and Fingers

2000 ◽  
Vol 19 (9) ◽  
pp. 835-847 ◽  
Author(s):  
Shih-Feng Chen ◽  
Imin Kao
2009 ◽  
Vol 16-19 ◽  
pp. 786-790 ◽  
Author(s):  
Shu Jun Li ◽  
Clément Gosselin

The analytical stiffness equations of the 3-RPR planar parallel mechanism are derived in this paper based on the Conservative Congruence Transformation (CCT) stiffness matrix proposed in [1-3]. Stiffness maps of the 3-RPR mechanism are plotted in order to show the behaviour of the stiffness with and without external forces. The stiffness characteristics of the mechanism are analyzed and discussed in details. Numerical examples show that the stiffness in x and in y are well balanced, while the stiffness in tends to be lower.


1998 ◽  
Vol 124 (1) ◽  
pp. 30-38 ◽  
Author(s):  
Milosˇ Zˇefran ◽  
Vijay Kumar

The stiffness of a rigid body subject to conservative forces and moments is described by a tensor, whose components are best described by a 6×6 Cartesian stiffness matrix. We derive an expression that is independent of the parameterization of the motion of the rigid body using methods of differential geometry. The components of the tensor with respect to a basis of twists are given by evaluating the tensor on a pair of basis twists. We show that this tensor depends on the choice of an affine connection on the Lie group, SE3. In addition, we show that the definition of the Cartesian stiffness matrix used in the literature [1,2] implicitly assumes an asymmetric connection and this results in an asymmetric stiffness matrix in a general loaded configuration. We prove that by choosing a symmetric connection we always obtain a symmetric Cartesian stiffness matrix. Finally, we derive stiffness matrices for different connections and illustrate the calculations using numerical examples.


Author(s):  
Ting Zou ◽  
Jorge Angeles

The 6 × 6 Cartesian stiffness matrix obtained through finite element analysis for structures designed with material and geometric symmetries may lead to unexpected coupling that stems from discretization error. Hence, decoupling of the Cartesian stiffness matrix becomes essential for design and analysis. This paper reports a numerical method for decoupling the Cartesian stiffness matrix, based on screw theory. With the aid of this method, the translational and rotational stiffness matrices can be analyzed independently. The mechanical properties of the decoupled stiffness submatrices are investigated via their associated eigenvalue analyses. The decoupling technique is applied to the design of two accelerometer layouts, uniaxial and biaxial, with what the authors term simplicial architectures. The decoupled stiffness matrices reveal acceptable compliance along the sensitive axes and high off-axis stiffness.


Sign in / Sign up

Export Citation Format

Share Document