Shared control architectures for haptic training: Performance and coupled stability analysis

2011 ◽  
Vol 30 (13) ◽  
pp. 1627-1642 ◽  
Author(s):  
Behzad Khademian ◽  
Keyvan Hashtrudi-Zaad

A novel shared control architecture is presented for dual-user haptic training simulation systems for enhanced interaction between the users and between each user and the virtual environment. The coupled stability of the proposed control architecture against uncertainties in the environment and the user’s dynamics is investigated using the three-port master–slave network model of the dual-user haptic simulation system. For this purpose, Llewellyn’s unconditional stability criterion is applied to an equivalent two-port network model obtained from the corresponding three-port network, considering the environment as a load termination. The kinesthetic performance of the proposed architecture is numerically analyzed for transparency and evaluated against a benchmark control architecture under different operating conditions, such as various types of environments, users’ grasps, and levels of dominance of users over the task. An experimental user study is carried out to assess the effectiveness of the proposed architecture in terms of users’ perception of environment stiffness sensing, device agility, and haptic guidance reception.

2004 ◽  
Vol 50 (8) ◽  
pp. 103-110 ◽  
Author(s):  
H.K. Oh ◽  
M.J. Yu ◽  
E.M. Gwon ◽  
J.Y. Koo ◽  
S.G. Kim ◽  
...  

This paper describes the prediction of flux behavior in an ultrafiltration (UF) membrane system using a Kalman neuro training (KNT) network model. The experimental data was obtained from operating a pilot plant of hollow fiber UF membrane with groundwater for 7 months. The network was trained using operating conditions such as inlet pressure, filtration duration, and feed water quality parameters including turbidity, temperature and UV254. Pre-processing of raw data allowed the normalized input data to be used in sigmoid activation functions. A neural network architecture was structured by modifying the number of hidden layers, neurons and learning iterations. The structure of KNT-neural network with 3 layers and 5 neurons allowed a good prediction of permeate flux by 0.997 of correlation coefficient during the learning phase. Also the validity of the designed model was evaluated with other experimental data not used during the training phase and nonlinear flux behavior was accurately estimated with 0.999 of correlation coefficient and a lower error of prediction in the testing phase. This good flux prediction can provide preliminary criteria in membrane design and set up the proper cleaning cycle in membrane operation. The KNT-artificial neural network is also expected to predict the variation of transmembrane pressure during filtration cycles and can be applied to automation and control of full scale treatment plants.


2021 ◽  
Author(s):  
Edwin Lawrence ◽  
Marie Bjoerdal Loevereide ◽  
Sanggeetha Kalidas ◽  
Ngoc Le Le ◽  
Sarjono Tasi Antoneus ◽  
...  

Abstract As part of the production optimization exercise in J field, an initiative has been taken to enhance the field production target without well intervention. J field is a mature field; the wells are mostly gas lifted, and currently it is in production decline mode. As part of this optimization exercise, a network model with multiple platforms was updated with the surface systems (separator, compressors, pumps, FPSO) and pipelines in place to understand the actual pressure drop across the system. Modelling and calibration of the well and network model was done for the entire field, and the calibrated model was used for the production optimization exercise. A representative model updated with the current operating conditions is the key for the field production and asset management. In this exercise, a multiphase flow simulator for wells and pipelines has been utilized. A total of ∼50 wells (inclusive of idle wells) has been included in the network model. Basically, the exercise started by updating the single-well model using latest well test data. During the calibration at well level, several steps were taken, such as evaluation of historical production, reservoir pressure, and well intervention. This will provide a better idea on the fine-tuning parameters. Upon completion of calibrating well models, the next level was calibration of network model at the platform level by matching against the platform operating conditions (platform production rates, separator/pipeline pressure). The last stage was performing field network model calibration to match the overall field performance. During the platform stage calibration, some parameters such as pipeline ID, horizontal flow correlation, friction factor, and holdup factor were fine-tuned to match the platform level operating conditions. Most of the wells in J field have been calibrated by meeting the success criterion, which is within +/-5% for the production rates. However, there were some challenges in matching several wells due to well test data validity especially wells located on remote platform where there is no dedicated test separator as well as the impact of gas breakthrough, which may interfere to performance of wells. These wells were decided to be retested in the following month. As for the platform level matching, five platforms were matched within +/-10% against the reported production rates. During the evaluation, it was observed there were some uncertainties in the reported water and gas rates (platform level vs. well test data). This is something that can be looked into for a better measurement in the future. By this observation, it was suggested to select Platform 1 with the most reliable test data as well as the platform rate for the optimization process and qualifying for the field trial. Nevertheless, with the representative network model, two scenarios, reducing separator pressure at platform level and gas lift optimization by an optimal gas lift rate allocation, were performed. The model predicts that a separator pressure reduction of 30 psi in Platform 1 has a potential gain of ∼300 BOPD, which is aligned with the field results. Apart from that, there was also a potential savings in gas by utilizing the predicted allocated gas lift injection rate.


2020 ◽  
Vol 13 (2) ◽  
pp. 270-285 ◽  
Author(s):  
Firas Abi-Farraj ◽  
Claudio Pacchierotti ◽  
Oleg Arenz ◽  
Gerhard Neumann ◽  
Paolo Robuffo Giordano

Author(s):  
Brian K. Kestner ◽  
Jimmy C.M. Tai ◽  
Dimitri N. Mavris

This paper presents a computationally efficient methodology for generating training data for a transient neural network model of a tip-jet reaction drive system for potential use as an onboard model in a model based control application. This methodology significantly reduces the number of training points required to capture the transient performance of the system. The challenge in developing an onboard model for a tip-jet reaction drive system is that the model has to operate over the whole flight envelope, to account for the different dynamics present in the system, and to adjust to system degradation or potential faults. In addition, the onboard model must execute in less time than the update interval of the controller. To address these issues, a computationally efficient training methodology and neural network surrogate model have been developed that captures the transient performance of the tip-jet reaction system. As the number of inputs to a neural network becomes large, the computational time needed to generate the number of training points required to accurately represent the range of operating conditions of the system may become quite large also. A challenge for the tip-jet reaction drive system is to minimize the number of neural network training points, while maintaining the high accuracy. To address this issue, a novel training methodology is presented which first trains a steady-state neural network model and uses deviations from steady-state operating conditions to define the transient portion of the training data. The combined results from both the transient and the steady-state training data can then be used to create a single transient neural network of the system. The results in this paper demonstrate that a transient neural network using this new computationally efficient training methodology has the potential to be a feasible option for use as an onboard real-time model for model based control of a tip-jet reaction drive system.


Sign in / Sign up

Export Citation Format

Share Document