Differentiation of prostate cancer and stromal hyperplasia in the transition zone with histogram analysis of the apparent diffusion coefficient

2017 ◽  
Vol 58 (12) ◽  
pp. 1528-1534 ◽  
Author(s):  
Liu Xiaohang ◽  
Zhou Bingni ◽  
Zhou Liangping ◽  
Peng Weijun ◽  
Yang Xiaoqun ◽  
...  

Background Prostate cancer and stromal hyperplasia (SH) in the transition zone (TZ) are difficult to discriminate by conventional magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI). Purpose To investigate the apparent diffusion coefficient (ADC) of prostate cancer and SH in the TZ with histogram analysis and the ability of ADC metrics to differentiate between these two tissues. Material and Methods Thirty-three cancer and 29 SH lesions in the TZ of 54 patients undergoing preoperative DWI (b-value 0, 1000 s/mm2) were analyzed. All the lesions on the MR images were localized based on histopathologic correlations. The 10th, 25th, and 50th percentiles, and the mean ADC values were calculated for the two tissues and compared. The efficiencies of the 10th, 25th, and 50th ADC percentiles in differentiating the two tissues were compared with that of the mean ADC with receiver operating characteristic (ROC) analysis. Results The 10th, 25th, and 50th percentiles and mean ADC values (×10−3 mm2/s) were 0.86 ± 0.15, 0.89 ± 0.16, 0.94 ± 0.16, and 1.03 ± 0.17 in SH and 0.64 ± 0.12, 0.69 ± 0.12, 0.72 ± 0.16, and 0.83 ± 0.15 in TZ cancer, respectively. The parameters were all significantly lower in cancer than SH. The 10th ADC percentile yielded an area under the ROC curve (AUC) of 0.87 for the differentiation of carcinomas from SH, which was higher than the mean ADC (0.80) ( P < 0.05), and the AUCs of the 25th (0.82) and 50th (0.83) percentiles exhibited no differences from those of the mean ADC ( P > 0.05). Conclusion Histogram analysis of ADC values may potentially improve the differentiation of prostate cancer from SH in the TZ.

2017 ◽  
Vol 58 (11) ◽  
pp. 1294-1302 ◽  
Author(s):  
Ga Eun Park ◽  
Sung Hun Kim ◽  
Eun Jeong Kim ◽  
Bong Joo Kang ◽  
Mi Sun Park

Background Breast cancer is a heterogeneous disease. Recent studies showed that apparent diffusion coefficient (ADC) values have various association with tumor aggressiveness and prognosis. Purpose To evaluate the value of histogram analysis of ADC values obtained from the whole tumor volume in invasive ductal cancer (IDC) and ductal carcinoma in situ (DCIS). Material and Methods This retrospective study included 201 patients with confirmed DCIS (n = 37) and IDC (n = 164). The IDC group was divided into two groups based on the presence of a DCIS component: IDC–DCIS (n = 76) and pure IDC (n = 88). All patients underwent preoperative breast magnetic resonance imaging (MRI) with diffusion-weighted images at 3.0 T. Histogram parameters of cumulative ADC values, skewness, and kurtosis were calculated and statistically analyzed. Results The differences between DCIS, IDC–DCIS, and pure IDC were significant in all percentiles of ADC values, in descending order of DCIS, IDC–DCIS, and pure IDC. IDC showed significantly lower ADC values than DCIS, and ADC50 was the best indicator for discriminating IDC from DCIS, with a threshold of 1.185 × 10–3 mm2/s (sensitivity of 82.9%, specificity of 75.7%). However, multivariate analysis of obtained ADC values showed no significant differences between DCIS, IDC–DCIS, and pure IDC ( P > 0.05). Conclusion Volume-based ADC values showed association with heterogeneity of breast cancer. However, there was no additional diagnostic performance in histogram analysis for differentiating between DCIS, IDC–DCIS, and pure IDC.


Author(s):  
H Taheri ◽  
M B Tavakoli

Background: aimed to compare the apparent diffusion coefficient (ADC) of two different cerebellar pediatric tumors, including ependymoma and medulloblastoma which have shown similar clinical images in conventional magnetic resonance imaging (MRI) methods.Material and Methods: Thirty six pediatric patients who were suspected to have the mentioned tumors according to their CT image findings were included in this study. The patients were subjected to conventional MRI protocols followed by diffusion weighted imaging (DWI) and ADC values of the tumors were calculated automatically using MRI scanner software.Results: The mean (± SD) ADC value for ependymoma (1.2± 0.06 ×10-3 mm2/s) was significantly higher than medulloblastoma (0.87 ± 0.02 ×10-3 mm2/s) (p = 0.041). Moreover, the maximum ADC value of ependymoma was considerably different in comparison with medulloblastoma (1.4 ×10-3 mm2/s and 0.96×10-3 mm2/s, respectively; p = 0.035) Furthermore, the minimum ADC value of ependymoma was higher compared to medulloblastoma (1.0 ×10-3 mm2/s and 0.61×10-3 mm2/s, respectively), but it was not significant (p = 0.067).Conclusion: Evaluation of ADC values for ependymoma and medulloblastoma is a reliable method to differentiate these two malignancies. This is due to different ADC values reflected during the evaluation.


2019 ◽  
Author(s):  
Prativa Sahoo ◽  
Russell Rockne ◽  
Jung Alexander ◽  
Pradeep K Gupta ◽  
Rakesh K Gupta

AbstractPurposeIt has been reported that diffusion weighted imaging (DWI) with ultrahigh b-value increases the diagnostic power of prostate cancer. DWI imaging with higher b-values is challenging as it commonly suffers from low signal to noise ratio (SNR), distortion and longer scan time. The aim of our study was to develop a technique for quantification of apparent diffusion coefficient (ADC) for higher b-values from lower b-value DW images.Materials and MethodsFifteen patient (7 malignant, 8 benign) with prostate cancer were included in this study retrospectively with the institutional ethical committee approval. All images were acquired at 3T MR scanner. The ADC values were calculated using mono-exponential model. Synthetic ADC (sADC) for higher b-value were computed using a log-linear model. Contrast ratio (CR) between prostate lesion and normal tissue on synthetic DWI (sDWI) was computed and compared with original DWI and ADC images.ResultsNo significant difference was observed between actual ADC and sADC for b-2000 in all prostate lesions. However; CR increased significantly (p=0.002, paired t-test) in sDWI as compared to DWI. Malignant lesions showed significantly lower sADC as compared to benign lesion (p=0.0116, independent t-test). Mean (±standard deviation) of sADC of malignant lesions was 0.601±0.06 and for benign lesions was 0.92 ± 0.09 (10−3mm2/s).Discussion / ConclusionOur initial investigation suggests that the ADC values corresponding to higher b-value can be computed using log-linear relationship derived from lower b-values (b≤1000). Our method might help clinician to decide the optimal b-value for prostate lesion identification.


2020 ◽  
pp. 028418512091561
Author(s):  
Hiram Shaish ◽  
Randy Casals ◽  
Firas Ahmed ◽  
Jasnit Makkar ◽  
Sven Wenske

Background Prior research has shown that retrospectively measured apparent diffusion coefficient (ADC) of prostate magnetic resonance imaging (MRI) lesions is associated with clinically significant prostate cancer (csPCa) on targeted biopsy suggesting that ADC should be measured and reported prospectively. Purpose To assess the impact of mandatory prospective measurement of ADC on the rates of positivity across PI-RADS scores for csPCa. Material and Methods Consecutive patients who underwent ultrasound (US)-MRI fusion prostate biopsy from August 2018 to July 2019 and who had prospectively reported ADC were compared to control patients who did not. Rates of positivity by PI-RADS category were computed and compared using Chi-square. Multivariable regression was performed. Results In total, 126 patients (median age 65 years) with 165 prostate lesions (19, 51, 70, and 25 PI-RADS 2, 3, 4, and 5, respectively) and prospectively reported ADC values were compared to 113 control patients (median age 66 years) with 157 prostate lesions (17, 42, 64, and 34 PI-RADS 2, 3, 4, and 5, respectively). Rates of positivity across PI-RADS scores were similar between the two cohorts; 11%, 25%, 55%, and 76% and 0%, 21%, 56%, and 62% for PI-RADS 2, 3, 4, and 5 in the test and control cohorts, respectively (Chi-square P = 0.78). Multivariate logistic regression showed no significant association between the presence of prospectively measured ADC and csPCa (odds ratio 1.1, 95% confidence interval 0.7–1.7, P = 0.82). Conclusion Prospective ADC measurement may not impact PI-RADS category assignments or positivity rates for csPCa under current guidelines. Future versions of PI-RADS may need to incorporate ADC into scoring rules to realize their potential.


2017 ◽  
Vol 59 (5) ◽  
pp. 599-605 ◽  
Author(s):  
Ionut Caravan ◽  
Cristiana Augusta Ciortea ◽  
Alexandra Contis ◽  
Andrei Lebovici

Background High-grade gliomas (HGGs) and brain metastases (BMs) can display similar imaging characteristics on conventional MRI. In HGGs, the peritumoral edema may be infiltrated by the malignant cells, which was not observed in BMs. Purpose To determine whether the apparent diffusion coefficient values could differentiate HGGs from BMs. Material and Methods Fifty-seven patients underwent conventional magnetic resonance imaging (MRI) and diffusion-weighted imaging (DWI) before treatment. The minimum and mean ADC in the enhancing tumor (ADCmin, ADCmean) and the minimum ADC in the peritumoral region (ADCedema) were measured from ADC maps. To determine whether there was a statistical difference between groups, ADC values were compared. A receiver operating characteristic (ROC) curve analysis was used to determine the cutoff ADC value for distinguishing between HGGs and BMs. Results The mean ADCmin values in the intratumoral regions of HGGs were significantly higher than those in BMs. No differences were observed between groups regarding ADCmean values. The mean ADCmin values in the peritumoral edema of HGGs were significantly lower than those in BMs. According to ROC curve analysis, a cutoff value of 1.332 × 10−3 mm2/s for the ADCedema generated the best combination of sensitivity (95%) and specificity (84%) for distinguishing between HGGs and BMs. The same value showed a sensitivity of 95.6% and a specificity of 100% for distinguishing between GBMs and BMs. Conclusion ADC values from DWI were found to distinguish between HGGs and solitary BMs. The peritumoral ADC values are better than the intratumoral ADC values in predicting the tumor type.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Shayan Sirat Maheen Anwar ◽  
Zahid Anwar Khan ◽  
Rana Shoaib Hamid ◽  
Fahd Haroon ◽  
Raza Sayani ◽  
...  

Purpose. To determine association between apparent diffusion coefficient value on diffusion-weighted imaging and Gleason score in patients with prostate cancer. Methods. This retrospective case series was conducted at Radiology Department of Aga Khan University between June 2009 and June 2011. 28 patients with biopsy-proven prostate cancer were included who underwent ultrasound guided sextant prostate biopsy and MRI. MRI images were analyzed on diagnostic console and regions of interest were drawn. Data were entered and analyzed on SPSS 20.0. ADC values were compared with Gleason score using one-way ANOVA test. Results. In 28 patients, 168 quadrants were biopsied and 106 quadrants were positive for malignancy. 89 lesions with proven malignancy showed diffusion restriction. The mean ADC value for disease with a Gleason score of 6 was 935 mm2/s (SD=248.4 mm2/s); Gleason score of 7 was 837 mm2/s (SD=208.5 mm2/s); Gleason score of 8 was 614 mm2/s (SD=108 mm2/s); and Gleason score of 9 was 571 mm2/s (SD=82 mm2/s). Inverse relationship was observed between Gleason score and mean ADC values. Conclusion. DWI and specifically quantitative ADC values may help differentiate between low-risk (Gleason score, 6), intermediate-risk (Gleason score, 7), and high-risk (Gleason score 8 and 9) prostate cancers, indirectly determining the aggressiveness of the disease.


Sign in / Sign up

Export Citation Format

Share Document