Diagnostic performance of diffusion-weighted imaging combined with dynamic contrast-enhanced magnetic resonance imaging for prostate cancer: a systematic review and meta-analysis

2020 ◽  
pp. 028418512095626
Author(s):  
Lu Yang ◽  
Yuchuan Tan ◽  
Hanli Dan ◽  
Lin Hu ◽  
Jiuquan Zhang

Background The diagnostic performance of diffusion-weighted imaging (DWI) combined with dynamic contrast-enhanced (DCE)-magnetic resonance imaging (MRI) for the detection of prostate cancer (PCa) has not been studied systematically to date. Purpose To investigate the value of DWI combined with DCE-MRI quantitative analysis in the diagnosis of PCa. Material and Methods A systematic search was conducted through PubMed, MEDLINE, the Cochrane Library, and EMBASE databases without any restriction to language up to 10 December 2019. Studies that used a combination of DWI and DCE-MRI for diagnosing PCa were included. Results Nine studies with 778 participants were included. The combination of DWI and DCE-MRI provide accurate performance in diagnosing PCa with pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratios of 0.79 (95% confidence interval [CI] = 0.76–0.81), 0.85 (95% CI = 0.83–0.86), 6.58 (95% CI = 3.93–11.00), 0.24 (95% CI = 0.17–0.34), and 36.43 (95% CI = 14.41–92.12), respectively. The pooled area under the summary receiver operating characteristic curve was 0.9268. Moreover, 1.5-T MR scanners demonstrated a slightly better performance than 3.0-T scanners. Conclusion Combined DCE-MRI and DWI could demonstrate a highly accurate area under the curve, sensitivity, and specificity for detecting PCa. More studies with large sample sizes are warranted to confirm these results.

2011 ◽  
Vol 52 (3) ◽  
pp. 324-330 ◽  
Author(s):  
Jens Hillengass ◽  
Bram Stieltjes ◽  
Tobias Bäuerle ◽  
Fabienne McClanahan ◽  
Christiane Heiss ◽  
...  

2019 ◽  
Vol 70 (4) ◽  
pp. 441-451
Author(s):  
Emetullah Cindil ◽  
Yusuf Oner ◽  
Halit Nahit Sendur ◽  
Hakan Ozdemir ◽  
Eymen Gazel ◽  
...  

Introduction To establish the diagnostic performance of the parameters obtained from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging at 3T in discriminating between non-clinically significant prostate cancers (ncsPCa, Gleason score [GS] < 7) and clinically significant prostate cancers (csPCa, GS ≥ 7) in the peripheral zone. Materials and Methods Twenty-six male patients with peripheral zone prostate cancer (PCa) who had undergone 3T multiparametric magnetic resonance imaging (MRI) scan prior to biopsy were included in the study and evaluated retrospectively. The GS was obtained by both standard 12-core transrectal ultrasound guided biopsy and targeted MRI-US fusion biopsy and then confirmed by prostatectomy, if available. For each confirmed tumour focus, DCE-derived quantitative perfusion metrics (Ktrans, Kep, Ve, initial area under the curve [AUC]), the apparent diffusion coefficient (ADC) value, and normalized versions of quantitative metrics were measured and correlated with the GS. Results Ktrans had the highest diagnostic accuracy value of 82% among the DCE-MRI parameters (AUC 0.90), and ADC had the strongest diagnostic accuracy value of 87% among the overall parameters (AUC 0.92). The combination of ADC and Ktrans have higher diagnostic performance with the area under the receiver operating characteristic curve being 0.98 (sensitivity 0.94; specificity 0.89; accuracy 0.92) compared to the individual evaluation of each parameter alone. The GS showed strong negative correlations with ADC (r = −0.72) and normalized ADC (r = −0.69) as well as a significant positive correlation with Ktrans (r = 0.69). Conclusion The combination of Ktrans and ADC and their normalized versions may help differentiate between ncsPCa from csPCa in the peripheral zone.


2021 ◽  
Vol 11 ◽  
Author(s):  
Jing Zeng ◽  
Qingqing Cheng ◽  
Dong Zhang ◽  
Meng Fan ◽  
Changzheng Shi ◽  
...  

BackgroundDynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) now has been used to diagnose prostate cancer (PCa). Equivocal lesions are defined as PIRADS category 3 or a Likert scale of 1 to 5 category 3 lesions. Currently, there are no clear recommendations for the management of these lesions. This study aimed to estimate the diagnostic capacity of DCE-MRI for PCa and clinically significant prostate cancer (csPCa) in equivocal lesions.Materials and methodsTwo researchers searched PubMed, Embase and Web of Science to identify studies that met our subject. We searched for articles that mention the accuracy of the diagnosis of DCE-MRI for PCa or csPCa in equivocal lesions and used histopathological results as the reference standard. We used a tool (the Quality Assessment of Diagnostic Accuracy Studies-2 tool) to evaluate the quality of the studies that we screened out. Meta-regression was used to explore the reasons for heterogeneity in results.ResultsTen articles were eventually included in our study. The sensitivity, specificity and 95% confidence intervals (CI) for DCE-MRI in diagnosing csPCa were 0.67 (95% CI, 0.56–0.76), 0.58 (95% CI, 0.46–0.68). The sensitivity and specificity and 95% CI for DCE-MRI in diagnosing PCa were 0.57 (95% CI, 0.46–0.68), 0.58 (95% CI, 0.45–0.70). The areas under the curve (AUC) of DCE-MRI were 0.67 (95% CI, 0.63–0.71) and 0.60 (95% CI, 0.55–0.64) while diagnosing csPCa and PCa. Through meta-regression, we found that study design, magnetic field strength, the definition of csPCa, and the scoring system were the sources of heterogeneity.ConclusionThe results of our study indicate that the role of DCE-MRI in equivocal lesions may be limited.


Author(s):  
L. A. R. Righesso ◽  
M. Terekhov ◽  
H. Götz ◽  
M. Ackermann ◽  
T. Emrich ◽  
...  

Abstract Objectives Micro-computed tomography (μ-CT) and histology, the current gold standard methods for assessing the formation of new bone and blood vessels, are invasive and/or destructive. With that in mind, a more conservative tool, dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), was tested for its accuracy and reproducibility in monitoring neovascularization during bone regeneration. Additionally, the suitability of blood perfusion as a surrogate of the efficacy of osteoplastic materials was evaluated. Materials and methods Sixteen rabbits were used and equally divided into four groups, according to the time of euthanasia (2, 3, 4, and 6 weeks after surgery). The animals were submitted to two 8-mm craniotomies that were filled with blood or autogenous bone. Neovascularization was assessed in vivo through DCE-MRI, and bone regeneration, ex vivo, through μ-CT and histology. Results The defects could be consistently identified, and their blood perfusion measured through DCE-MRI, there being statistically significant differences within the blood clot group between 3 and 6 weeks (p = 0.029), and between the former and autogenous bone at six weeks (p = 0.017). Nonetheless, no significant correlations between DCE-MRI findings on neovascularization and μ-CT (r =−0.101, 95% CI [−0.445; 0.268]) or histology (r = 0.305, 95% CI [−0.133; 0.644]) findings on bone regeneration were observed. Conclusions These results support the hypothesis that DCE-MRI can be used to monitor neovascularization but contradict the premise that it could predict bone regeneration as well.


2021 ◽  
Vol 11 (6) ◽  
pp. 775
Author(s):  
Sung-Suk Oh ◽  
Eun-Hee Lee ◽  
Jong-Hoon Kim ◽  
Young-Beom Seo ◽  
Yoo-Jin Choo ◽  
...  

(1) Background: Blood brain barrier (BBB) disruption following traumatic brain injury (TBI) results in a secondary injury by facilitating the entry of neurotoxins to the brain parenchyma without filtration. In the current paper, we aimed to review previous dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) studies to evaluate the occurrence of BBB disruption after TBI. (2) Methods: In electronic databases (PubMed, Scopus, Embase, and the Cochrane Library), we searched for the following keywords: dynamic contrast-enhanced OR DCE AND brain injury. We included studies in which BBB disruption was evaluated in patients with TBI using DCE-MRI. (3) Results: Four articles were included in this review. To assess BBB disruption, linear fit, Tofts, extended Tofts, or Patlak models were used. KTrans and ve were increased, and the values of vp were decreased in the cerebral cortex and predilection sites for diffusion axonal injury. These findings are indicative of BBB disruption following TBI. (4) Conclusions: Our analysis supports the possibility of utilizing DCE-MRI for the detection of BBB disruption following TBI.


Sign in / Sign up

Export Citation Format

Share Document