scholarly journals Benefits of a frame-based stereotactic surgical planning system for the treatment of spontaneous intracerebral haematomas

2013 ◽  
Vol 41 (5) ◽  
pp. 1550-1559 ◽  
Author(s):  
Zhiping Dun ◽  
Shugan Zhu ◽  
Hao Jiang
Author(s):  
Volker A. Coenen ◽  
Bastian E. Sajonz ◽  
Peter C. Reinacher ◽  
Christoph P. Kaller ◽  
Horst Urbach ◽  
...  

Abstract Background An increasing number of neurosurgeons use display of the dentato-rubro-thalamic tract (DRT) based on diffusion weighted imaging (dMRI) as basis for their routine planning of stimulation or lesioning approaches in stereotactic tremor surgery. An evaluation of the anatomical validity of the display of the DRT with respect to modern stereotactic planning systems and across different tracking environments has not been performed. Methods Distinct dMRI and anatomical magnetic resonance imaging (MRI) data of high and low quality from 9 subjects were used. Six subjects had repeated MRI scans and therefore entered the analysis twice. Standardized DICOM structure templates for volume of interest definition were applied in native space for all investigations. For tracking BrainLab Elements (BrainLab, Munich, Germany), two tensor deterministic tracking (FT2), MRtrix IFOD2 (https://www.mrtrix.org), and a global tracking (GT) approach were used to compare the display of the uncrossed (DRTu) and crossed (DRTx) fiber structure after transformation into MNI space. The resulting streamlines were investigated for congruence, reproducibility, anatomical validity, and penetration of anatomical way point structures. Results In general, the DRTu can be depicted with good quality (as judged by waypoints). FT2 (surgical) and GT (neuroscientific) show high congruence. While GT shows partly reproducible results for DRTx, the crossed pathway cannot be reliably reconstructed with the other (iFOD2 and FT2) algorithms. Conclusion Since a direct anatomical comparison is difficult in the individual subjects, we chose a comparison with two research tracking environments as the best possible “ground truth.” FT2 is useful especially because of its manual editing possibilities of cutting erroneous fibers on the single subject level. An uncertainty of 2 mm as mean displacement of DRTu is expectable and should be respected when using this approach for surgical planning. Tractographic renditions of the DRTx on the single subject level seem to be still illusive.


2007 ◽  
Vol 07 (01) ◽  
pp. 55-63 ◽  
Author(s):  
CHAN CHEE FATT ◽  
IRWAN KASSIM ◽  
CHARLES LO ◽  
IVAN NG ◽  
KWOH CHEE KEONG

The 3D volume visualization is to overcome the difficulties of the 2D imaging by using computer technology. A volume visualization approach has been successfully implemented for Surgical Planning System in National Neuroscience Institute (NNI). The system allows surgeons to plan a surgical approach on a set of 2D image slices and process into volume models and visualise them in 3D rapidly and interactively on PC. In our implementation, we have applied it in neurosurgical planning. The surgeon can visualize objects of interest like tumor and surgical path, and verify that the surgical plan avoids the critical features and the planning of the surgical path can thus be optimal.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Anna Di Laura ◽  
Johann Henckel ◽  
Harry Hothi ◽  
Alister Hart

Abstract Background Modern designs of joint replacements require a large inventory of components to be available during surgery. Pre-operative CT imaging aids 3D surgical planning and implant sizing, which should reduce the inventory size and enhance clinical outcome. We aimed to better understand the impact of the use of 3D surgical planning and Patient Specific Instrumentation (PSI) on hip implant inventory. Methods An initial feasibility study of 25 consecutive cases was undertaken to assess the discrepancy between the planned component sizes and those implanted to determine whether it was possible to reduce the inventory for future cases. Following this, we performed a pilot study to investigate the effect of an optimized inventory stock on the surgical outcome: we compared a group of 20 consecutive cases (experimental) with the 25 cases in the feasibility study (control). We assessed: (1) accuracy of the 3D planning system in predicting size (%); (2) inventory size changes (%); (3) intra and post-operative complications. Results The feasibility study showed variability within 1 size range, enabling us to safely optimize inventory stock for the pilot study. (1) 3D surgical planning correctly predicted sizes in 93% of the femoral and 89% of the acetabular cup components; (2) there was a 61% reduction in the implant inventory size; (3) we recorded good surgical outcomes with no difference between the 2 groups, and all patients had appropriately sized implants. Conclusions 3D planning is accurate in up to 95% of the cases. CT-based planning can reduce inventory size in the hospital setting potentially leading to a reduction in costs.


Diagnostics ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 621
Author(s):  
Silviu Daniel Preda ◽  
Cătălin Ciobîrcă ◽  
Gabriel Gruionu ◽  
Andreea Șoimu Iacob ◽  
Konstantinos Sapalidis ◽  
...  

Minimal invasive surgical procedures such as laparoscopy are preferred over open surgery due to faster postoperative recovery, less trauma and inflammatory response, and less scarring. Laparoscopic repairs of hiatal hernias require pre-procedure planning to ensure appropriate exposure and positioning of the surgical ports for triangulation, ergonomics, instrument length and operational angles to avoid the fulcrum effect of the long and rigid instruments. We developed a novel surgical planning and navigation software, iMTECH to determine the optimal location of the skin incision and surgical instrument placement depth and angles during laparoscopic surgery. We tested the software on five cases of human hiatal hernia to assess the feasibility of the stereotactic reconstruction of anatomy and surgical planning. A whole-body CT investigation was performed for each patient, and abdominal 3D virtual models were reconstructed from the CT scans. The optical trocar access point was placed on the xipho-umbilical line. The distance on the skin between the insertion point of the optical trocar and the xiphoid process was 159.6, 155.7, 143.1, 158.3, and 149.1 mm, respectively, at a 40° elevation angle. Following the pre-procedure planning, all patients underwent successful surgical laparoscopic procedures. The user feedback was that planning software significantly improved the ergonomics, was easy to use, and particularly useful in obese patients with large hiatal defects where the insertion points could not be placed in the traditional positions. Future studies will assess the benefits of the planning system over the conventional, empirical trocar positioning method in more patients with other surgical challenges.


Author(s):  
Yong Chong Loh ◽  
Ming Yeong Teo ◽  
Wan Sing Ng ◽  
C. Sim ◽  
Qing Song Zou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document