scholarly journals Noninvasive prenatal screening for fetal common sex chromosome aneuploidies from maternal blood

2017 ◽  
Vol 45 (2) ◽  
pp. 621-630 ◽  
Author(s):  
Bin Zhang ◽  
Bei-Yi Lu ◽  
Bin Yu ◽  
Fang-Xiu Zheng ◽  
Qin Zhou ◽  
...  

Objective To explore the feasibility of high-throughput massively parallel genomic DNA sequencing technology for the noninvasive prenatal detection of fetal sex chromosome aneuploidies (SCAs). Methods The study enrolled pregnant women who were prepared to undergo noninvasive prenatal testing (NIPT) in the second trimester. Cell-free fetal DNA (cffDNA) was extracted from the mother’s peripheral venous blood and a high-throughput sequencing procedure was undertaken. Patients identified as having pregnancies associated with SCAs were offered prenatal fetal chromosomal karyotyping. Results The study enrolled 10 275 pregnant women who were prepared to undergo NIPT. Of these, 57 pregnant women (0.55%) showed fetal SCA, including 27 with Turner syndrome (45,X), eight with Triple X syndrome (47,XXX), 12 with Klinefelter syndrome (47,XXY) and three with 47,XYY. Thirty-three pregnant women agreed to undergo fetal karyotyping and 18 had results consistent with NIPT, while 15 patients received a normal karyotype result. The overall positive predictive value of NIPT for detecting SCAs was 54.54% (18/33) and for detecting Turner syndrome (45,X) was 29.41% (5/17). Conclusion NIPT can be used to identify fetal SCAs by analysing cffDNA using massively parallel genomic sequencing, although the accuracy needs to be improved particularly for Turner syndrome (45,X).

Author(s):  
Stella C. Yuan ◽  
Eric Malekos ◽  
Melissa T. R. Hawkins

AbstractThe use of museum specimens held in natural history repositories for population and conservation genetic research is increasing in tandem with the use of massively parallel sequencing technologies. Short Tandem Repeats (STRs), or microsatellite loci, are commonly used genetic markers in wildlife and population genetic studies. However, they traditionally suffered from a host of issues including length homoplasy, high costs, low throughput, and difficulties in reproducibility across laboratories. Massively parallel sequencing technologies can address these problems, but the incorporation of museum specimen derived DNA suffers from significant fragmentation and exogenous DNA contamination. Combatting these issues requires extra measures of stringency in the lab and during data analysis, yet there have not been any high-throughput sequencing studies evaluating microsatellite allelic dropout from museum specimen extracted DNA. In this study, we evaluate genotyping errors derived from mammalian museum skin DNA extracts for previously characterized microsatellites across PCR replicates utilizing high-throughput sequencing. We found it useful to classify samples based on DNA concentration, which determined the rate by which genotypes were accurately recovered. Longer microsatellites performed worse in all museum specimens. Allelic dropout rates across loci were dependent on sample quantity, with high concentration museum specimens performing as well and recovering quality metrics nearly as high as the frozen tissue sample. Based on our results, we provide a set of best practices for quality assurance and incorporation of reliable genotypes from museum specimens.


2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Yibo Chen ◽  
Qi Yu ◽  
Xiongying Mao ◽  
Wei Lei ◽  
Miaonan He ◽  
...  

Abstract Background Since the discovery of cell-free DNA (cfDNA) in maternal plasma, it has opened up new approaches for non-invasive prenatal testing. With the development of whole-genome sequencing, small subchromosomal deletions and duplications could be found by NIPT. This study is to review the efficacy of NIPT as a screening test for aneuploidies and CNVs in 42,910 single pregnancies. Methods A total of 42,910 single pregnancies with different clinical features were recruited. The cell-free fetal DNA was directly sequenced. Each of the chromosome aneuploidies and the subchromosomal microdeletions/microduplications of PPV were analyzed. Results A total of 534 pregnancies (1.24%) were abnormal results detected by NIPT, and 403 pregnancies had underwent prenatal diagnosis. The positive predictive value (PPV) for trisomy 21(T21), trisomy 18 (T18), trisomy 13 (T13), sex chromosome aneuploidies (SCAs), and other chromosome aneuploidy was 79.23%, 54.84%, 13.79%, 33.04%, and 9.38% respectively. The PPV for CNVs was 28.99%. The PPV for CNVs ≤ 5 Mb is 20.83%, for within 5–10 Mb 50.00%, for > 10 Mb 27.27% respectively. PPVs of NIPT according to pregnancies characteristics are also different. Conclusion Our data have potential significance in demonstrating the usefulness of NIPT profiling not only for common whole chromosome aneuploidies but also for CNVs. However, this newest method is still in its infancy for CNVs. There is still a need for clinical validation studies with accurate detection rates and false positive rates in clinical practice.


2008 ◽  
Vol 121 (3-4) ◽  
pp. 211-214 ◽  
Author(s):  
G. Queipo ◽  
D. Aguirre ◽  
K. Nieto ◽  
Y.R. Peña ◽  
I. Palma ◽  
...  

2018 ◽  
Vol 8_2018 ◽  
pp. 48-55
Author(s):  
Sukhikh G.T. Sukhikh ◽  
Tetruashvili N.K. Tetruashvili ◽  
Kim L.V. Kim ◽  
Trofimov D.Yu. Trofimov ◽  
Barkov I.Yu. Barkov I ◽  
...  

2009 ◽  
Vol 3 (3) ◽  
pp. 123-132
Author(s):  
Annapia Verri ◽  
Anna Cremante

Sex chromosome anomalies have been associated with psychoses. We report a patient with XYY chromosome anomaly who developed a paranoid psychosis. The second case deal with a 51-year-old woman affected by Turner Syndrome and Psychotic Disorder, with a prevalent somatic and sexual focus.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3350-3350
Author(s):  
Jenny Zhang ◽  
Dereje D. Jima ◽  
Yuan Gao ◽  
Han Wu ◽  
Jun Zhu ◽  
...  

Abstract Background: MicroRNAs (miRNAs) are small non coding RNAs that have been shown to play a regulatory role in a number of different settings including development, hematopoiesis and lineage-selection. The expression patterns of miRNAs in various cellular processes and in various normal and malignant tissues are an area of active exploration. Bioinformatic analyses of the genome suggest that there might be thousands of miRNAs encoded in the genome. However, thus far only about 600 unique miRNAs have been identified in humans. The role of microRNAs in B cell malignancies is poorly understood. Mature B cells comprise naive, germinal center, memory and plasma cells. These B cell stages comprise the majority of leukemias and lymphomas. We have previously demonstrated a role for microRNAs in the regulation of key transcription factors and oncogenes including PRDM1, LMO2 and MYBL1. We hypothesized that microRNAs play a role in the pathogenesis of lymphomas and have applied high throughput sequencing to understand the pattern and function of microRNA expression in normal B cells and their malignant counterparts. Methods: CD19+ mature B cells were obtained from normal patients undergoing tonsillectomy and sorted using flow cytometry into naive, germinal center, memory and plasma cells. We also obtained cells from tumor cell lines derived from mantle cell lymphoma (Mino, JVM2), Burkitt lymphoma (Ramos, BL41) and multiple myeloma (H929, U266), as well as patient tumor samples derived from Burkitt lymphoma and diffuse large B cell lymphomas. From these cells, we purified small RNAs (18-25 nucleotides) and ligated sequencing adapters to these small RNAs and subjected them to 15 cycles of PCR amplification. The constructs were then subjected to massively parallel high throughput sequencing (Illumina) in picoliter wells to identify millions of sequences per sample. Sequences thus identified were matched to the genome and microRNAs were identified based on their characteristic stem-loop secondary structure, thermodynamic stability, and evidence of processing with the microRNA-related enzymes drosha and dicer. Results: Using massively parallel high-throughput sequencing of small RNAs isolated from these B cell subsets, we analyzed a total of 62,293,147 sequences (> 1.6 billion bases). We found that 261 known microRNAs are expressed in normal and malignant B cells, a number that is three times higher than previously recognized. Our work also identified the expression of 86 novel miRNAs in normal and malignant B cells, many of which appear to target genes important in B cell differentiation including BCL6, NLK, EBF, as well as oncogenes including MYC, LMO2, and CCND1. We found no evidence of decreased expression of microRNAs in B cell malignancies, in contrast to the described down-regulation of microRNAs in tumors from other lineages. On the other hand, there were striking differences between the microRNA expression patterns in normal and malignant B cells, although B cell malignancies still frequently express miRNAs that are characteristic of their normal B cell counterpart. Each malignancy had a characteristic pattern of microRNA expression that was distinct from other malignancies and normal B cells. Conclusion: Through high throughput sequencing, we have discovered novel microRNAs that target important oncogenes including BCL6, MYC, LMO2, and CCND1, suggesting a role for microRNAs in B cell lymphomas.


2014 ◽  
Vol 42 (4) ◽  
Author(s):  
Ivanka Bekavac Vlatkovic ◽  
Tomislav Hafner ◽  
Berivoj Miskovic ◽  
Ana Vicic ◽  
Borna Poljak ◽  
...  

AbstractAnalysis of prenatally diagnosed sex chromosome aneuploidies and disorders of sex development (DSDs).This study includes a retrospective data analysis of 46 prenatally detected sex chromosome aneuploidies and one case of 46,XY DSD diagnosed during an 11-year period (2002–2012) at our department.Of the 46 sex chromosome aneuploidies, 29 cases (63.0%) were in the group of a selected population of women according to abnormal first-/second-trimester ultrasound and 17 (37.0%) cases in an unselected population of women who underwent fetal karyotyping because of advanced maternal age. The most common aneuploidy was Turner syndrome in full and mosaic form (50%). Complete androgen insensitivity syndrome was diagnosed in the case of 46,XY DSD.Sex chromosome aneuploidies must be taken into consideration if, in the first or second trimester, abnormalities are revealed on ultrasound, mainly Turner syndrome in full or mosaic form and 47,XYY.


Sign in / Sign up

Export Citation Format

Share Document