scholarly journals Effect of alteplase on platelet function and receptor expression

2019 ◽  
Vol 47 (4) ◽  
pp. 1731-1739 ◽  
Author(s):  
Jun Lu ◽  
Peng Hu ◽  
Guangyu Wei ◽  
Qi Luo ◽  
Jianlin Qiao ◽  
...  

Objective To investigate the role of alteplase, a widely-used thrombolytic drug, in platelet function. Methods Human platelets were incubated with different concentrations of alteplase followed by analysis of platelet aggregation in response to adenosine diphosphate (ADP), collagen, ristocetin, arachidonic acid or epinephrine using light transmittance aggregometry. Platelet activation and surface levels of platelet receptors GPIbα, GPVI and αIIbβ3 were analysed using flow cytometry. The effect of alteplase on clot retraction was also examined. Results This study demonstrated that alteplase significantly inhibited platelet aggregation in response to ADP, collagen and epinephrine in a dose-dependent manner, but it did not affect ristocetin- or arachidonic acid-induced platelet aggregation. Alteplase did not affect platelet activation as demonstrated by no differences in P-selectin levels and PAC-1 binding being observed in collagen-stimulated platelets after alteplase treatment compared with vehicle. There were no changes in the surface levels of the platelet receptors GPIbα, GPVI and αIIbβ3 in alteplase-treated platelets. Alteplase treatment reduced thrombin-mediated clot retraction. Conclusions Alteplase inhibits platelet aggregation and clot retraction without affecting platelet activation and surface receptor levels.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3513-3513
Author(s):  
Wenxiu Yi ◽  
Wei Li ◽  
Lijie Ren ◽  
Xinliang Mao ◽  
Li Zhu

Abstract The phosphatidylinositol 3' –kinase (PI3K)-Akt signaling pathway has been shown to be critical in modulating platelet function and increasing number of studies have been focusing on the development of PI3K inhibitors to modulate platelet function. We recently identified a novel small molecule compound S14161, namely 8-ethoxy-2-(4-fluorophenyl)-3-nitro-2H-chromene, displaying potent antileukemia and antimyeloma activity via inhibition of the PI3K pathway (Mao et al, Blood, 2011, 117:1986). In the present study, we evaluated the effect of S14161 on platelet activation and the underlying mechanisms. Gel-filtered human platelets were isolated from venous blood of healthy adults and the effect of S14161 on platelet aggregation in response to agonists was determined. Results showed that S14161 inhibited platelet aggregation induced by collagen, convulxin, thrombin, PAR1 agonist peptide SFLLRN, and U46619 in a dose dependent manner (2.5-10μM) with the most striking inhibition for collagen by 89.8% (P<0.001, n=3) and for U46619 by 94.3% (P<0.001, n=3), respectively compared to vehicle-treated samples when 10μM S14161 was used. Flow cytometry studies showed that S14161 inhibits convulxin- or thrombin-induced P-selectin expression and fibrinogen binding of single platelet. S14161 also inhibited platelet spreading on fibrinogen and clot retraction, processes mediated by outside-in signaling. Using a microfluidic chamber we demonstrated that incubation of S14161 decreases platelet adhesion on collagen-coated surface by about 80% at various time points of blood flow in the chambers. Western blot showed that similar to LY294002, the classic PI3K inhibitor, S14161 inhibited phosphorylation of Akt Ser473 and Akt Thr308 in response to collagen, thrombin, or U46619, implying the involvement of PI3K pathway. Additionally, S14161 inhibited MAPK/ERK1/2 phosphorylation. Finally, the effects of S14161 on thrombus formation in vivo were measured using a ferric chloride-induced carotid artery injury model in mice. The intraperitoneal injection of S14161 (2mg/kg) to male C57BL6/J mice significantly extended the first occlusion time (5.05±0.99 min, N=9) compared to the vehicle controls (3.72±0.95 min, N=8) (P<0.05), but did not increase the bleeding time (P>0.05). Taken together, our data showed that S14161 inhibits platelet activation and thrombus formation, and may be developed as a novel therapeutic agent for the prevention of thrombotic disorders. (This study was supported by National Natural Science Foundation of China 81170132 to Li Zhu) Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 115 (11) ◽  
pp. 1672-1679 ◽  
Author(s):  
Qi Ma ◽  
Weilin Zhang ◽  
Chongzhuo Zhu ◽  
Junling Liu ◽  
Quan Chen

Abstract Aims AKT kinase is vital for regulating signal transduction in platelet aggregation. We previously found that mitochondrial protein FUNDC2 mediates phosphoinositide 3-kinase (PI3K)/phosphatidylinositol-3,4,5-trisphosphate (PIP3)-dependent AKT phosphorylation and regulates platelet apoptosis. The aim of this study was to evaluate the role of FUNDC2 in platelet activation and aggregation. Methods and results We demonstrated that FUNDC2 deficiency diminished platelet aggregation in response to a variety of agonists, including adenosine 5′-diphosphate (ADP), collagen, ristocetin/VWF, and thrombin. Consistently, in vivo assays of tail bleeding and thrombus formation showed that FUNDC2-knockout mice displayed deficiency in haemostasis and thrombosis. Mechanistically, FUNDC2 deficiency impairs the phosphorylation of AKT and downstream GSK-3β in a PI3K-dependent manner. Moreover, cGMP also plays an important role in FUNDC2/AKT-mediated platelet activation. This FUNDC2/AKT/GSK-3β/cGMP axis also regulates clot retraction of platelet-rich plasma. Conclusion FUNDC2 positively regulates platelet functions via AKT/GSK-3β/cGMP signalling pathways, which provides new insight for platelet-related diseases.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3904-3904
Author(s):  
Samantha Baldassarri ◽  
Alessandra Bertoni ◽  
Paolo Lova ◽  
Stefania Reineri ◽  
Chiara Sarasso ◽  
...  

Abstract 2-Arachidonoylglycerol (2-AG) is a naturally occurring monoglyceride that activates cannabinoid receptors and meets several key requisites of an endogenous cannabinoid substance. It is present in the brain and hematopoietic cells, including macrophages, lymphocytes and platelets. 2-AG is released from cells in a stimulus-dependent manner and is rapidly eliminated by uptake into cells and enzymatic hydrolysis in arachidonic acid and glycerol. 2-AG might exert a very fine control on platelet function either through mechanisms intertwining with the signal transduction pathways used by platelet agonists or through mechanisms modulating specific receptors. The aim of this study was to define the role of 2-AG in human platelets and characterize the mechanisms by which it performs its action. Platelets from healthy donors were isolated from plasma by differential centrifugations and gel-filtration on Sepharose 2B. The samples were incubated with 2-AG (10–100 μM) under constant stirring in the presence or absence of various inhibitors. Platelet aggregation was measured by Born technique. We have found that stimulation of human platelets with 2-AG induced irreversible aggregation, which was significantly enhanced by co-stimulation with ADP (1–10 μM). Furthermore, 2-AG-dependent platelet aggregation was completely inhibited by ADP scavengers, aspirin, and Rho kinase inhibitor, as well as by antagonists of the 2-AG receptor (CB2), of the ADP P2Y12 receptor, and of the thromboxane A2 receptor. We further investigated the role of endocannabinoids on calcium mobilization. Intracellular [Ca2+] was measured using FURA-2-loaded platelets prewarmed at 37°C under gentle stirring in a spectrofluorimeter. 2-AG induced rapid increase of cytosolic [Ca2+] in a dose-dependent manner. This effect was partially blocked by ADP scavengers and CB2 receptor antagonists. Furthermore, 2-AG-induced [Ca2+] mobilization was totally suppressed by aspirin or the thromboxane A2 receptor antagonist. These results suggest that 2-AG is able to trigger platelet activation, and that this action is partially mediated by CB2 receptor and ADP. Furthmore, 2-AG-dependent platelet activation is totally dependent on thromboxane A2 generation.


2019 ◽  
Vol 119 (10) ◽  
pp. 1655-1664 ◽  
Author(s):  
Qi Luo ◽  
Guangyu Wei ◽  
Xiamin Wang ◽  
Xiaoqi Xu ◽  
Wen Ju ◽  
...  

AbstractAll-trans retinoic acid (ATRA) is widely used for induction of complete remission in patients with acute promyelocytic leukemia (APL). ATRA also regulates protein kinase C (PKC) activity. Therapeutic use of ATRA reportedly interferes with hemostatic function in APL patients, including effects on coagulation or other vascular cells, although effects of ATRA on platelets remain unclear. This study aims to investigate the effect of therapeutic-relevant doses of ATRA on platelet function. Human platelets were preincubated with ATRA (0–20 μM) for 1 hour at 37°C, followed by analysis of aggregation, granule secretion, receptor expression by flow cytometry, platelet spreading, or clot retraction. Additionally, ATRA (10 mg/kg) was injected intraperitoneally into mice and tail bleeding time and arterial thrombus formation were evaluated. ATRA inhibited platelet aggregation and adenosine triphosphate release induced by collagen (5 μg/mL) or thrombin (0.05 U/mL) in a dose-dependent manner without affecting P-selectin expression or surface levels of glycoprotein (GP) Ibα, GPVI, or αIIbβ3. ATRA-treated platelets demonstrated reduced spreading on immobilized fibrinogen or collagen and reduced thrombin-induced clot retraction together with reduced phosphorylation of Syk and PLCγ2. In addition, ATRA-treated mice displayed significantly impaired hemostasis and arterial thrombus formation in vivo. Further, in platelets stimulated with either collagen-related peptide or thrombin, ATRA selectively inhibited phosphorylation of PKCßI (Ser661) and PKCδ (Thr505), but not PKCα or PKCßII phosphorylation (Thr638/641). In conclusion, ATRA inhibits platelet function and thrombus formation, possibly involving direct or indirect inhibition of PKCßI/δ, indicating that ATRA might be beneficial for the treatment of thrombotic or cardiovascular diseases.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3892-3892
Author(s):  
Shogo Kasuda ◽  
Yoshihiko Sakurai ◽  
Midori Shima ◽  
Masahiro Takeyama ◽  
Katsuhiko Hatake ◽  
...  

Abstract Background: Moderate consumption of alcohol beverages reduces the morbidity from coronary heart disease. Previous studies describing of inhibitory activity of ethanol (EtOH) on platelet function have substantiated this observation. However, the effects of EtOH on thrombin-related platelet activation remains to be fully elucidated, though platelet activation by thrombin is essential for normal hemostasis as well as relevant to pathophysiological conditions of thrombosis. Objectives: The aim of this study is to elucidate the effect of EtOH on α-thrombin-related platelet function by measuring platelet aggregation and intracellular calcium ([Ca2+]i). Materials and Methods: A dual-wavelength spectrofluorometer was used for measurement. α-thrombin, PAR1-activating peptide (AP) (10 μM) or PAR4-AP (25 μM) was added to fura2-AM loaded washed platelet preincubated with or without EtOH (40, 80, 160 and 320 mM). Results and Interpretations: First, the effects of EtOH on 0.5 nM of thrombin-induced platelet activation was assessed. The concentration 0.5 nM used is conceived to activate platelets only via PAR-1. EtOH did not affect platelet aggregation. EtOH inhibited rise of [Ca2+]i dose-dependently. [Ca2+]i peak time at which maximal rise of [Ca2+]i delayed in a dose-dependent manner. Secondly, 10 nM of thrombin was used as an agonist. Stimulation by high concentrations of thrombin (〉 5nM) results in cleavage of both PAR1 and PAR4. The changes in [Ca2+]i showed double-phase curve composed of transient spike and prolonged peak in the absence of EtOH. Although EtOH inhibited neither platelet aggregation nor the first phase of [Ca2+]i increasing, it reduced the second prolonged elevation of [Ca2+]i dose-dependently. To elucidate the inhibiting mechanism of EtOH more precisely, the effects of EtOH on PAR1-AP-induced platelet function were examined. Rise of [Ca2+]i gave a spike form and was almost unchanged even in the presence of high concentrations of EtOH, whereas platelet aggregation was reduced and dissociated in the presence of EtOH. Lastly, the effects of EtOH on PAR4-AP-induced platelet function was examined. Aggregation of PRP was quenched by high concentrations of EtOH but dissociation was not observed contrary to that observed in PAR1-AP-induced aggregation. Further, EtOH inhibited [Ca2+]i rise and delayed [Ca2+]i peak time dose-dependently. Our results provided a possible mechanism by which EtOH inhibits platelet activation. Reduction of the prolonged elevation of [Ca2+]i by high concentrations of thrombin suggested that EtOH inhibits PAR4 signaling not PAR1 since the second prolonged phase of [Ca2+]i is mediated by PAR4. Inhibition of PAR4-induced aggregation and [Ca2+]i elevation by EtOH supported the findings and EtOH might reduce Ca2+ influx through inhibition of PAR4. Furethermore, the difference between the platelet activation mechanisms of low concentrations of thrombin and PAR1-AP was suggested. PAR1-AP can aggregate platelets at least but might fail to activate phospholipase A2 required for sustaining stable aggregation since EtOH abolishes phospholipase A2 and thereby reduces thromboxane A2 generation. On the other, thrombin at low concentrations might have another pathway for activating platelet differently than PAR1-AP. Further characterization of the mechanisms involved in inhibition of platelet activation by EtOH may help develop new strategies to control thrombin-mediated platelet activation.


Blood ◽  
1977 ◽  
Vol 49 (2) ◽  
pp. 185-196 ◽  
Author(s):  
BB Weksler ◽  
M Gillick ◽  
J Pink

Abstract Excessive reactivity of blood platelets may contribute to atherosclerotic vascular disease. Hence drugs which alter platelet function may be protective. Prompted by findings that propranolol therapy normalized hyperactive platelet aggregation in patients with coronary artery disease, we studied propranolol in vitro to assess its action on platelets. At concentrations similar to those achieved in vivo (0.1–1 muM), propranolol raised the thresholds for aggregation of some normal paltelets by adenosine diphosphate (ADP). At higher concentrations (10-50 muM), propranolol abolished the second wave of platelet aggregation induced by ADP and epinephrine, and inhibited aggregation induced by collagen, thrombin, and the ionophore A23187. Propanolol blocked the release of 14C-serotonin from platelets, inhibited platelet adhesion to collagen, and interfered with clot retraction. Propranolol blocked ionophore-induced uptake of 45Ca by platelets. Inhibition appeared unrelated to beta-adrenergic blockage, as d(+) propranolol (which lacks beta-blocking activity) was equipotent with 1(-) propranolol. Moreover, practolol, a beta-blockading drug which is nonlipophilic, did not inhibit platelet function. These studies suggested that propranolol, like local anesthetics, decreased platelet responsiveness by a direct action on the platelet membrane, possibly by interfering with calcium availability. Modulation of platelet function by propranolol may occur at concentrations achieved at usual clinical doses of the drug.


2008 ◽  
Vol 36 (03) ◽  
pp. 603-613 ◽  
Author(s):  
Yu-Min Yang ◽  
Xing-Xiang Wang ◽  
Jun-Zhu Chen ◽  
Shi-Jun Wang ◽  
Hu Hu ◽  
...  

Inappropriate platelet activation is the key point of thrombogenesis. The aim of the present study was to investigate the effects of resveratrol (RESV), a compound extracted from the Chinese medicinal herb Polygonum cuspidatum sieb et Zucc, on the platelet activation induced by adenosine diphosphate (ADP) and its possible mechanism. The percentage of platelet aggregation and surface P-selectin-positive platelets, and the activity of protein kinase C (PKC) of platelet were observed with platelet aggregometer, flow cytometry and phosphorimaging system, respectively. RESV at 25, 50 and 100 μM showed anti-platelet aggregation and inhibition of surface P-selectin-positive platelets in a concentration-dependent manner. RESV (50 μM) inhibited the activity of PKC in the membrane fraction of platelets and decreased the percentage of membrane associated PKC activity in total PKC activity. Moreover, DL-erythro-1,3-Dihydroxy-2-aminooctadecane, an elective protein kinase C inhibitor (PKCI), and RESV had additive effects of inhibiting the percentage of platelet aggregation and surface P-selectin-positive platelets. It is suggested that RESV may inhibit platelet aggregation, the percentage of surface P-selectin-positive platelets and subsequent thrombus formation. The mechanisms may be partly relative to the decrease of the activity of PKC of platelets.


Author(s):  
Antonio López Farré ◽  
Javier Modrego ◽  
José J. Zamorano-León

AbstractPlatelets and their activation/inhibition mechanisms play a central role in haemostasis. It is well known agonists and antagonists of platelet activation; however, during the last years novel evidences of hormone effects on platelet activation have been reported. Platelet functionality may be modulated by the interaction between different hormones and their platelet receptors, contributing to sex differences in platelet function and even in platelet-mediated vascular damage. It has suggested aspects that apparently are well established should be reviewed. Hormones effects on platelet activity are included among them. This article tries to review knowledge about the involvement of hormones in platelet biology and activity.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 2540-2540
Author(s):  
Michelle Sung ◽  
Jeanine Walenga ◽  
Walter Jeske ◽  
Omer Iqbal ◽  
Mamdouh Bakhos

Abstract Background Heparin is a sulfated polysaccharide obtained from intestinal mucosa with anticoagulant properties that is widely used as a standard clinical therapeutic agent to treat and prevent thrombosis. Heparin is known to affect platelet function, and among its side effects is heparin-induced thrombocytopenia (HIT) that can occur in about 1% of patients exposed to heparin. Presently, only porcine source heparin is approved for use in the United States. The aims of this study were to determine if platelet activation by physiological agonists and platelet aggregation induced by HIT antibodies would be equivalent in the presence of bovine source heparin and porcine source heparin. Materials and Methods Seven lots of bovine heparin from Eurofarma and 3 lots of commercial clinical grade porcine heparin (Pfizer/Hospira) were evaluated. The USP Reference Standard for porcine heparin was used to determine anti-Xa and anti-IIa potencies of the bovine heparins. For each study, blood was collected from healthy volunteers (n=5 per test group), anticoagulated with sodium citrate, and centrifuged to obtain platelet rich plasma (PRP). Platelet aggregation responses were assessed using the BioData PAP-8 platelet aggregometer. For the first aim to evaluate platelet function, PRP was combined with heparin at final concentrations of 10.0, 1.0, and 0.1 µg/mL, covering both therapeutic and prophylactic ranges. Platelet agonists included adenosine diphosphate (ADP), collagen, epinephrine, arachidonic acid, and thrombin receptor agonist peptide (TRAP). The aggregation response was quantitated in terms of primary slope (PS), area under the curve (AUC), maximum aggregation (MA), and final aggregation (FA). For the second aim to evaluate the HIT potential, antibodies to the complex of heparin-platelet factor 4 (H-PF4) from banked HIT patient apheresis fluid were combined with donor PRP and heparin. Heparins were tested at final concentrations of 0.1, 0.4, 0.8, 1, and 100 U/mL. PS and FA results were recorded. For all data, comparisons were analyzed with 2-Way ANOVA using SigmaPlot software. Results In the presence of either bovine (BMH) or porcine heparin (PMH), the normal platelet aggregation response of all donors was not altered from that obtained with saline (see representative aggregation tracing in the image below). All heparin concentrations produced the same response. There were no significant differences between the bovine and porcine heparins for each of the 4 platelet aggregation parameters for ADP, arachidonic acid, collagen, epinephrine, and TRAP. Variation in the PS for arachidonic acid and collagen need to be assessed in a larger pool of donors to assure the lack of significant difference. Platelet activation to H-PF4 antibodies was strong at 0.1 to 1 U/mL concentrations with the expected inhibition observed when using 100 U/mL heparin. The HIT potential between bovine heparin and porcine heparin demonstrated no significant difference between the heparins (see MA responses in the image below). There were no lot to lot differences for the bovine heparins or the porcine heparins in either the platelet aggregation studies or the assessment for HIT. Conclusion In these studies of platelet function, the bovine and porcine source heparins were comparable with regards to their effects on platelet aggregation induced by multiple different agonists and their HIT potential. Figure. Figure. Disclosures Walenga: Eurofarma: Research Funding.


Blood ◽  
2002 ◽  
Vol 99 (1) ◽  
pp. 193-198 ◽  
Author(s):  
Jianguo Jin ◽  
Todd M. Quinton ◽  
Jin Zhang ◽  
Susan E. Rittenhouse ◽  
Satya P. Kunapuli

Adenosine diphosphate (ADP) is a platelet agonist that causes platelet shape change and aggregation as well as generation of thromboxane A2, another platelet agonist, through its effects on P2Y1, P2Y12, and P2X1 receptors. It is now reported that both 2-propylthio-D-βγ-dichloromethylene adenosine 5′-triphosphate (AR-C67085), a P2Y12 receptor–selective antagonist, and adenosine-2′-phosphate-5′-phosphate (A2P5P), a P2Y1 receptor–selective antagonist, inhibited ADP-induced thromboxane A2 generation in a concentration-dependent manner, indicating that coactivation of the P2Y12 and P2Y1 receptors is essential for this event. SC49992, a fibrinogen receptor antagonist, blocked ADP-induced platelet aggregation and thromboxane A2 production in a concentration-dependent manner. Similarly, P2 receptor antagonists or SC49992 blocked ADP-induced arachidonic acid liberation. Whereas SC49992 blocked arachidonic acid–induced platelet aggregation, it failed to inhibit thromboxane A2 generation induced by arachidonic acid. Thus, ADP-induced arachidonic acid liberation, but not subsequent conversion to thromboxane A2, requires outside-in signaling through the fibrinogen receptor. The Fab fragment of ligand-induced binding site–6 (LIBS6) antibody, which induces a fibrinogen-binding site on the integrin αIIbβ3, caused both platelet aggregation and thromboxane A2 generation. Inhibitors of phosphoinositide 3-kinase, Syk, Src kinases, or protein tyrosine phosphatases inhibited platelet aggregation but not thromboxane A2 generation, indicating that these signaling molecules have no significant role in phospholipase A2 activation. In the presence of P2 receptor antagonists A2P5P or AR-C67085, LIBS6 failed to generate thromboxane A2, suggesting that inside-out signaling through ADP receptors is necessary for this event. It was concluded that both outside-in signaling from the fibrinogen receptor and inside-out signaling from the P2Y1 and P2Y12 receptors are necessary for phospholipase A2 activation, resulting in arachidonic acid liberation and thromboxane A2 generation.


Sign in / Sign up

Export Citation Format

Share Document