Catchment scale distributed hydrological models

1987 ◽  
Vol 11 (1) ◽  
pp. 28-51 ◽  
Author(s):  
M.G. Anderson ◽  
C.C.M. Rogers
Biologia ◽  
2017 ◽  
Vol 72 (9) ◽  
Author(s):  
Ilona Kása ◽  
Györgyi Gelybó ◽  
Ágota Horel ◽  
Zsófia Bakacsi ◽  
Eszter Tóth ◽  
...  

AbstractCatchment scale hydrological models are promising tools for simulating the effect of catchment-specific processes and management on soil and water resources. Here, we present a model intercomparison study of runoff simulations using three different semi-distributed rainfall-runoff catchment models. The objective of this study was to demonstrate the applicability of the Hydrologiska Byrans Vattenavdelning (HBV-Light); Precipitation, Evapotranspiration and Runoff Simulator for Solute Transport (PERSiST); and INtegrated CAtchment (INCA) models on Somogybabod Catchment, near Lake Balaton, Hungary.The models were calibrated and validated against observed discharge data at the outlet of the catchment for the period of January 1, 2006 –July 12, 2015. Model performance was evaluated using graphical representations, e.g. daily and monthly hydrographs and Flow Duration Curves (FDC) and model evaluation statistic; Nash–Sutcliffe efficiency (NSE) and coefficient of determination (


2006 ◽  
Vol 10 (3) ◽  
pp. 427-442 ◽  
Author(s):  
N. Varado ◽  
I. Braud ◽  
S. Galle ◽  
M. Le Lay ◽  
L. Séguis ◽  
...  

Abstract. This study is part of the AMMA - African Multidisciplinary Monsoon Analysis- project and aims at a better understanding and modelling of the Donga catchment (580 km2, Benin) behaviour in order to determine its spatially distributed water balance. For this purpose, we applied the REW concept proposed by Reggiani et al. (1998, 1999), which allows the description of the main local processes at the sub-watershed scale. Such distributed hydrological models, which represent hydrological processes at various scales, should be evaluated not only on the discharge at the outlet but also on each of the represented processes and in several points of the catchment. This multi-criteria approach is required in order to assess the global behaviour of hydrological models. We applied such multi-criteria strategy to the Donga catchment (586 km2), in Benin. The work was supported by an observation set up, undertaken since 1998 consisting in a network of 20 rain gauges, an automatic meteorological station, 6 discharge stations and 18 wells. The main goal of this study was to assess the model's ability to reproduce the discharge at the outlet, the water table dynamics in several points of the catchment and the vadose zone dynamics at the sub-catchment scale. We tested two spatial discretisations of increasing resolution. To test the internal structure of the model, we looked at its ability to represent also the discharge at intermediate stations. After adjustment of soil parameters, the model is shown to accurately represent discharge down to a drainage area of 100 km2, whereas poorer simulation is achieved on smaller catchments. We introduced the spatial variability of rainfall by distributing the daily rainfall over the REW and obtained a very low sensitivity of the model response to this variability. Simulation of groundwater levels was poor and our results, in conjunction with new data available at the local scale, suggest that the representation of the processes in the unsaturated zone should first be improved, in order to better simulate soil water dynamics and represent perched water tables which were not included in this first modelling study.


2007 ◽  
Vol 332 (1-2) ◽  
pp. 226-240 ◽  
Author(s):  
Félix Francés ◽  
Jaime Ignacio Vélez ◽  
Jorge Julián Vélez

Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1177 ◽  
Author(s):  
Lufang Zhang ◽  
Baolin Xue ◽  
Yuhui Yan ◽  
Guoqiang Wang ◽  
Wenchao Sun ◽  
...  

Distributed hydrological models play a vital role in water resources management. With the rapid development of distributed hydrological models, research into model uncertainty has become a very important field. When studying traditional hydrological model uncertainty, it is very common to use multisite observation data to evaluate the performance of the model in the same watershed, but there are few studies on uncertainty in watersheds with different characteristics. This study is based on the Soil and Water Assessment Tool (SWAT) model, and uses two common methods: Sequential Uncertainty Fitting Version 2 (SUFI-2) and Generalized Likelihood Uncertainty Estimation (GLUE) for uncertainty analysis. We compared these methods in terms of parameter uncertainty, model prediction uncertainty, and simulation effects. The Xiaoqing River basin and the Xinxue River basin, which have different characteristics, including watershed geography and scale, were used for the study areas. The results show that the GLUE method had better applicability in the Xiaoqing River basin, and that the SUFI-2 method provided more reasonable and accurate analysis results in the Xinxue River basin; thus, the applicability was higher. The uncertainty analysis method is affected to some extent by the characteristics of the watershed.


2003 ◽  
Vol 29 (6) ◽  
pp. 701-710 ◽  
Author(s):  
Inge Sandholt ◽  
Jens Andersen ◽  
Gorm Dybkjær ◽  
Lotte Nyborg ◽  
Medou Lô ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document