Multi-body dynamics co-simulation of hoisting wire rope

2017 ◽  
Vol 53 (1) ◽  
pp. 36-45 ◽  
Author(s):  
Qing Huang ◽  
Zhi Li ◽  
Hong-qian Xue

As more wire ropes with complex construction are used in the hoisting system of a crane, it becomes more necessary to predict the risks of the hoisting operation. Especially the wire rope, dynamic analysis is required to manage the potential risk in advance. Thus, in this article, a co-simulation method based on multi-body dynamics and finite element method is proposed to determine the dynamic responses of a hoisting system and wire rope. We developed a dynamic model of hoisting system based on ADAMS/Cable to formulate the time history response of dynamic force on wire rope, which could be used as the loading condition in the posterior finite element model. A three-dimensional geometric model for the multi-layered strands wire rope with a construction of 1+7+7 / 7+14 wires is implemented in the finite element analysis software ABAQUS, and both static and dynamic analyses are presented. The static analysis result of force–strain relation is compared with several experiment data, and the finite element model is proved accurate and reliable. In the latter case, the force–time curves obtained by dynamic model are imported to finite element model as loading condition to accomplish dynamic analysis. The co-simulation results of hoisting wire rope’s behavior subjected to dynamic loading during the hoisting process are carried out and discussed. The stress distribution and stress spectrum of wire rope are obtained, and the results show that the most dangerous regions are the lateral side of wire rope, especially the contact area of two wires in strands.

Author(s):  
Fengxia Wang

This work concerns the implementation of nonlinear modal reduction to flexible multi-body dynamics. Linear elastic theory will lead to instability issues with rotating beamlike structures, due to the neglecting of the membrane-bending coupling on the beam cross-section. During the past decade, considerable efforts have been focused on the derivation of geometric nonlinear formulation based on nodal coordinates. In this work, in order to improve the convergence characteristic and also to reduce the computation time in flexible multi-body dynamics, which is extremely important for complicated large systems, a standard modal reduction procedure based on matrix operation is developed with essential geometric stiffening nonlinearities retained in the equation of motion. The example used in this work is a rotating Euler-Bernoulli beam, two nonlinear reduced models were established based on modal coordinates, the first reduced model created from theoretical bending and axial mode shapes by Galerkin method; the second reduced model is derived by the standard matrix operator from a full finite element model. Transient simulation results of lower degrees of freedom from above two reduced models are compared with those obtained from full nonlinear finite element model.


2012 ◽  
Vol 490-495 ◽  
pp. 1076-1080
Author(s):  
Xin Tan ◽  
Yao Li ◽  
Jun Jie Yang

This paper introduces a computational model for calculating the lifetime of rolling bearings in a 1.5MW wind turbine’s epicyclic gearbox. At first, a quasi-dynamic model is established to analyze the skidding of bearings and the skew of rollers. Then, the load distributions on raceways and inner rings of bearings are calculated using the quasi-dynamic model. Meanwhile, a multi-body finite element model established in RomaxWind software is utilized to simulate and analyze dynamics behaviors of the epicyclic gearbox including all bearings. The comparison of bearings’ lifetimes calculated with different methods shows that the quasi-dynamic model can obtain very close results as the multi-body finite element model obtains, but costs less time. Failures occurring on inner and outer rings, such as pitting, adhesion, are mainly resulted from the misalignment of inner rings and roller number on the skidding of bearings


Bone ◽  
2013 ◽  
Vol 57 (1) ◽  
pp. 18-29 ◽  
Author(s):  
J.H. Keyak ◽  
S. Sigurdsson ◽  
G.S. Karlsdottir ◽  
D. Oskarsdottir ◽  
A. Sigmarsdottir ◽  
...  

Author(s):  
Michaël Martinez ◽  
Sébastien Montalvo

Abstract The mooring of floating platforms is an important challenge for the offshore industry. It is an important part of the design engineering and, often, a critical point for the fatigue life assessment. A solution that could improve the fatigue life is to directly connect the mooring rope to the platform, without an intermediate chain. However this solution is not widespread and the behavior of a rope near such a connection is little known. The present paper proposes to better understand this behavior, thanks to a detailed finite element model of the rope. The study case is a steel wire rope directly connected to a floating wind turbine. A local finite element model of the rope has been built, where the wires are individually modeled with beam elements. One end of the rope is clamped, simulating the connection, while tension and cyclic bending oscillations are applied to the other end. A localized bending takes place near the connection, leading to stress concentration in the wires. The stress concentration and the local contact forces are calculated for each wire. These data are important entry parameters for a local failure or fatigue analysis. This latter is however not presented here. Despite IFPEN experience in the development of local finite element models of steel wire ropes, it is the first time that such a high capacity rope (MBL = 12 500 kN) is modeled. This is challenging because of the large diameter of the rope and the large number of wires. However this modeling approach is very valuable for such ropes, because the experimental tests are rare and very expensive.


Sign in / Sign up

Export Citation Format

Share Document