Adverse effects of erenumab on cerebral proliferative angiopathy: A case report

Cephalalgia ◽  
2020 ◽  
pp. 033310242095048
Author(s):  
Laura L Lehman ◽  
Rebecca Bruccoleri ◽  
Amy Danehy ◽  
Julie Swanson ◽  
Christine Mrakotsky ◽  
...  

Background Cerebral proliferative angiopathy is a vascular malformation associated with compromised blood-brain barrier and with migraine-like headache. Treating blood-brain barrier-compromised patients with erenumab, an anti-calcitonin gene-related peptide receptor monoclonal antibody, may be risky. Case We describe a case of a 22-year-old chronic migraine patient with cerebral proliferative angiopathy who presented to our hospital in status epilepticus 2 d after his first dose of erenumab. Serial magnetic resonance imaging (MRI) studies demonstrated progressive areas of diffusion restriction including the brain tissue adjacent to the cerebral proliferative angiopathy, bilateral white matter and hippocampi. His 6-month post-presentation magnetic resonance imaging was notable for white matter injury, encephalomalacia surrounding cerebral proliferative angiopathy and bilateral hippocampal sclerosis. He remains clinically affected with residual symptoms, including refractory epilepsy and cognitive deficits. Conclusion The evidence presented in this case supports further investigation into potential deleterious side effects of erenumab in patients with compromised blood-brain barrier, such as individuals with intracranial vascular malformations.

2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Justine Debatisse ◽  
Omer Faruk Eker ◽  
Océane Wateau ◽  
Tae-Hee Cho ◽  
Marlène Wiart ◽  
...  

Abstract In an acute ischaemic stroke, understanding the dynamics of blood–brain barrier injury is of particular importance for the prevention of symptomatic haemorrhagic transformation. However, the available techniques assessing blood–brain barrier permeability are not quantitative and are little used in the context of acute reperfusion therapy. Nanoparticles cross the healthy or impaired blood–brain barrier through combined passive and active processes. Imaging and quantifying their transfer rate could better characterize blood–brain barrier damage and refine the delivery of neuroprotective agents. We previously developed an original endovascular stroke model of acute ischaemic stroke treated by mechanical thrombectomy followed by positron emission tomography-magnetic resonance imaging. Cerebral capillary permeability was quantified for two molecule sizes: small clinical gadolinium Gd-DOTA (<1 nm) and AGuIX® nanoparticles (∼5 nm) used for brain theranostics. On dynamic contrast-enhanced magnetic resonance imaging, the baseline transfer constant Ktrans was 0.94 [0.48, 1.72] and 0.16 [0.08, 0.33] ×10−3 min−1, respectively, in the normal brain parenchyma, consistent with their respective sizes, and 1.90 [1.23, 3.95] and 2.86 [1.39, 4.52] ×10−3 min−1 in choroid plexus, confirming higher permeability than brain parenchyma. At early reperfusion, Ktrans for both Gd-DOTA and AGuIX® nanoparticles was significantly higher within the ischaemic area compared to the contralateral hemisphere; 2.23 [1.17, 4.13] and 0.82 [0.46, 1.87] ×10−3 min−1 for Gd-DOTA and AGuIX® nanoparticles, respectively. With AGuIX® nanoparticles, Ktrans also increased within the ischaemic growth areas, suggesting added value for AGuIX®. Finally, Ktrans was significantly lower in both the lesion and the choroid plexus in a drug-treated group (ciclosporin A, n = 7) compared to placebo (n = 5). Ktrans quantification with AGuIX® nanoparticles can monitor early blood–brain barrier damage and treatment effect in ischaemic stroke after reperfusion.


Epilepsia ◽  
2019 ◽  
Vol 60 (5) ◽  
pp. 1005-1016 ◽  
Author(s):  
Erez Hanael ◽  
Ronel Veksler ◽  
Alon Friedman ◽  
Guy Bar‐Klein ◽  
Vladimir V. Senatorov ◽  
...  

2009 ◽  
Vol 69 (15) ◽  
pp. 6200-6207 ◽  
Author(s):  
Omid Veiseh ◽  
Conroy Sun ◽  
Chen Fang ◽  
Narayan Bhattarai ◽  
Jonathan Gunn ◽  
...  

Epilepsia ◽  
2015 ◽  
Vol 57 (1) ◽  
pp. 59-69 ◽  
Author(s):  
Erwin A. van Vliet ◽  
Willem M. Otte ◽  
Wytse J. Wadman ◽  
Eleonora Aronica ◽  
Gijs Kooij ◽  
...  

2016 ◽  
Vol 37 (8) ◽  
pp. 2706-2715 ◽  
Author(s):  
Yash V Tiwari ◽  
Jianfei Lu ◽  
Qiang Shen ◽  
Bianca Cerqueira ◽  
Timothy Q Duong

Diffusion-weighted arterial spin labeling magnetic resonance imaging has recently been proposed to quantify the rate of water exchange (Kw) across the blood–brain barrier in humans. This study aimed to evaluate the blood–brain barrier disruption in transient (60 min) ischemic stroke using Kw magnetic resonance imaging with cross-validation by dynamic contrast-enhanced magnetic resonance imaging and Evans blue histology in the same rats. The major findings were: (i) at 90 min after stroke (30 min after reperfusion), group Kw magnetic resonance imaging data showed no significant blood–brain barrier permeability changes, although a few animals showed slightly abnormal Kw. Dynamic contrast-enhanced magnetic resonance imaging confirmed this finding in the same animals. (ii) At two days after stroke, Kw magnetic resonance imaging revealed significant blood–brain barrier disruption. Regions with abnormal Kw showed substantial overlap with regions of hyperintense T2 (vasogenic edema) and hyperperfusion. Dynamic contrast-enhanced magnetic resonance imaging and Evans blue histology confirmed these findings in the same animals. The Kw values in the normal contralesional hemisphere and the ipsilesional ischemic core two days after stroke were: 363 ± 17 and 261 ± 18 min−1, respectively (P < 0.05, n = 9). Kw magnetic resonance imaging is sensitive to blood–brain barrier permeability changes in stroke, consistent with dynamic contrast-enhanced magnetic resonance imaging and Evans blue extravasation. Kw magnetic resonance imaging offers advantages over existing techniques because contrast agent is not needed and repeated measurements can be made for longitudinal monitoring or averaging.


Sign in / Sign up

Export Citation Format

Share Document