Robust Route Guidance Model Based on Advanced Traveler Information Systems

Author(s):  
Jiangang Lu ◽  
Xuegang Ban ◽  
Zhijun Qiu ◽  
Fan Yang ◽  
Bin Ran

In this paper a new robust optimization (RO) model is proposed for route guidance based on the advanced traveler information system. The arc travel time is treated as a random variable, and its distribution is estimated from historical data. Traditional stochastic routing models just minimize the expected travel time between the origin and the destination. Such approaches do not account for the fact that travelers often incorporate travel time variability in their decision making. Recently some RO models were proposed to incorporate more statistical information into the models, but these models still ignore much information available from historical travel time data. The probability measurement, time at risk (TaR), is introduced in this paper, and a multiobjective model is built up that allows a trade-off between the expected travel time and the TaR. Thus, the skewness and kurtosis of the arc travel time distribution are taken into consideration; that is important because the travel time distributions of typical arcs show high asymmetry and long tails on the right side as a result of the impact of random incidents and events. This approach is applied in two examples, one of which is a real traffic network.

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Yajie Zou ◽  
Ting Zhu ◽  
Yifan Xie ◽  
Linbo Li ◽  
Ying Chen

Travel time reliability (TTR) is widely used to evaluate transportation system performance. Adverse weather condition is an important factor for affecting TTR, which can cause traffic congestions and crashes. Considering the traffic characteristics under different traffic conditions, it is necessary to explore the impact of adverse weather on TTR under different conditions. This study conducted an empirical travel time analysis using traffic data and weather data collected on Yanan corridor in Shanghai. The travel time distributions were analysed under different roadway types, weather, and time of day. Four typical scenarios (i.e., peak hours and off-peak hours on elevated expressway, peak hours and off-peak hours on arterial road) were considered in the TTR analysis. Four measures were calculated to evaluate the impact of adverse weather on TTR. The results indicated that the lognormal distribution is preferred for describing the travel time data. Compared with off-peak hours, the impact of adverse weather is more significant for peak hours. The travel time variability, buffer time index, misery index, and frequency of congestion increased by an average of 29%, 19%, 22%, and 63%, respectively, under the adverse weather condition. The findings in this study are useful for transportation management agencies to design traffic control strategies when adverse weather occurs.


Author(s):  
Christopher L. Saricks ◽  
Joseph L. Schofer ◽  
Siim Sööt ◽  
Paul A. Belella

ADVANCE was an in-vehicle advanced traveler information system (ATIS) providing route guidance in real time that operated in the northwestern portion and northwest suburbs of Chicago, Illinois. It used probe vehicles to generate dynamically travel time information about expressways, arterials, and local streets. Tests to evaluate the subsystems of ADVANCE, executed with limited availability of test vehicles and stringent scheduling, are described; they provided useful insights into both the performance of the ADVANCE system as a whole and the desirable and effective characteristics of ATIS deployments generally. Tests found that the user features of an in-route guidance system must be able to accommodate a broad range of technological sophistication and network knowledge among the population likely to become regular users of such a system. For users who know the local network configuration, only a system giving reliable real-time data about nonrecurrent congestion is likely to find a market base beyond specialized applications. In general, the quality and usefulness of systemwide real-time route guidance provided by other means are enhanced significantly by even a small deployment of probes: probe data greatly improve static (archival average) link travel time estimates by time of day, although the guidance algorithms that use these data should also include arterial traffic signal timings. Moreover, probe- and detector-based incident detection on arterial networks shows considerable promise for improved performance and reliability.


Author(s):  
Zifeng Wu ◽  
Laurence R. Rilett ◽  
Yifeng Chen

Highway-rail grade crossings (HRGCs) have a range of safety and operational impacts on highway traffic networks. This paper illustrates a methodology for evaluating travel-time reliability for the routes and networks affected by trains traveling through HRGCs. A sub-area network including three HRGCs is used as the study network, and a simulation model calibrated to local traffic conditions and signal preemption strategies using field data is used as the platform to generate travel time data for analysis. Time-dependent reliability intervals for route travel time are generated based on route travel-time means and standard deviations. OD level reliability is calculated using a generic reliability engineering approach for parallel and series systems. The route travel time reliability results can be provided as real-time traffic information to assist drivers’ route-choice decisions. The OD level reliability is a way to quantify the impact of HRGCs on highway network operation. This effort fills the gap of reliability research for HRGCs on the route and sub-area network level, and contributes to improving the efficiency of decision-making for both traffic engineers and drivers.


Author(s):  
Linda Ng ◽  
Woodrow Barfield

Advanced Traveler Information Systems/Commercial Vehicle Operations (ATIS/CVO) are segments of IVHS currently being researched as a means of decreasing road congestion and increasing safety. Due to the complex information requirements for these systems, three surveys have been designed by University of Washington researchers and distributed nationwide to collect these requirements from the users: commercial drivers, dispatchers and private vehicle drivers This paper discusses the methodology used to design the surveys and the effort to ensure that a representative sample was included on a nationwide basis. Approximately 8,300 surveys were distributed in person and 10,000 dispatcher surveys were distributed in a newsletter. Data estimation procedures will include modeling the influence of an in-vehicle system for route guidance and determining the significant impacts of an ATIS/CVO in terms of age, gender, income, and other socioeconomic characteristics.


Author(s):  
Isam Kaysi ◽  
Nadine Hage Ali

The role that advanced traveler information systems (ATISs) are likely to play in alleviating traffic congestion is explored. The impacts of and benefits from traveler guidance systems that are based on instantaneous as well as predictive information are assessed by developing an analytical formulation for a simple prototypical network. Previous research introducing day-to-day flow variability with both compliance and market-penetration considerations is reviewed, and the case in which traffic flow varies within the day is developed. Two strategies for determining route-guidance directives are considered in the case of predictive information. Also, the integration of ATIS and traffic control through open-loop coordination measures is introduced, with the objective of finding the optimal signal control to maintain user equilibrium on alternate routes. The superiority of predictive information in maintaining guidance validity and mitigating the potential adverse impacts of information is demonstrated.


Author(s):  
Richard J. Hanowski ◽  
Susan C. Kantowitz ◽  
Barry H. Kantowitz

Human factors research can be used to design safe and efficient Advanced Traveler Information Systems (ATIS) that are easy to use (Kantowitz, Becker, & Barlow, 1993). This research used the Battelle Route Guidance Simulator (RGS) to examine two important issues related to driver behavior and acceptance of ATIS technology: (1) the effect of route familiarity on ATIS use and acceptance and (2) the level of information accuracy needed for an ATIS to be accepted and considered useful. The RGS included two 486 computers that provided drivers with real-time information and traffic reports. Drivers used a touch screen to select routes on one computer monitor and watched the results of their selection (i.e., real-time video of the traffic) on a second computer monitor. Drivers could use the system to obtain information about the traffic conditions on any link before traversing a route. In this experiment, subjects were exposed to four experimental conditions involving manipulation of the driver's familiarity with the route and the reliability of the traffic information obtained from the RGS (i.e., 100%, 71%, and 43% accuracy). The driver's goal was to reach the destination as quickly as possible by avoiding heavy traffic. The results indicated that drivers were able to benefit from system information when it was reliable, but not when it was unreliable. Trust ratings for the 43% accuracy group were significantly higher at the beginning of the four trials than at the end. Also, drivers were more apt to rely on the ATIS and accept information given in an unfamiliar traffic network versus a familiar one.


Author(s):  
Ramachandran Balakrishna ◽  
Haris N. Koutsopoulos ◽  
Moshe Ben-Akiva ◽  
Bruno M. Fernandez Ruiz ◽  
Manish Mehta

Traveler information has the potential to reduce travel times and improve their reliability. Studies have verified that driver overreaction from the dissemination of information can be eliminated through prediction-based route guidance that uses short-term forecasts of network state. Critical off-line tests of advanced dynamic traffic assignment–based prediction systems have been limited, since the system being evaluated has also been used as the test bed. This paper outlines a detailed simulation-based laboratory for the objective and independent evaluation of advanced traveler information systems, a laboratory with the flexibility to analyze the impacts of various design parameters and modeling errors on the quality of the generated guidance. MITSIMLab, a system for the evaluation of advanced traffic management systems, is integrated with Dynamic Network Assignment for the Management of Information to Travelers (DynaMIT), a simulation-based decision support system designed to generate prediction-based route guidance. Evaluation criteria and requirements for the closed-loop integration of MITSIMLab and DynaMIT are discussed. Detailed case studies demonstrating the evaluation methodology and sensitivity of DynaMIT's guidance are presented.


Sign in / Sign up

Export Citation Format

Share Document