Comparison of the Relative Long-Term Field Performance among Various Warm Mix Asphalt (WMA) Pavements

Author(s):  
Weiguang Zhang ◽  
Shihui Shen ◽  
Shenghua Wu

The use of warm mix asphalt (WMA) has increased greatly over the past decade because it provides potential to lower energy demands, reduce emissions, and increase haul distances. However, questions remain about the long-term performance of WMA pavements, including whether different WMA technologies can provide the same field performance. In this paper, field rutting and cracking (transverse and longitudinal) performance data for chemical, organic, and foaming WMA technologies are compared pairwise. Thirty-four WMA-WMA pairs from 13 field test roads are included, which cover different pavement ages, traffic volumes, pavement structures, WMA technologies, and four climate zones across the United States. For the WMA-WMA pairs that exhibited statistically different performance, their material properties were investigated further to identify potential factors that could be used to characterize such field differences. The results indicate that, generally, no statistical performance differences are evident between the WMA-WMA pairs. However, it is worth noting that over the longer term, there are individual projects whose organic pavement sections showed statistically higher amounts of cracking than the chemical and foaming sections. Based on the laboratory testing results on field cores, it is suggested that the greater amounts of transverse cracking exhibited by organic pavements may be caused by organic’s lower mixture fracture work density and lower binder failure strain values compared with those of the chemical and foaming sections. The greater amounts of longitudinal cracking exhibited by the organic pavements may be caused by organic’s higher mixture indirect tensile strength, lower mixture fracture work density, and lower binder fracture energy values compared with those of the chemical and foaming sections.

2013 ◽  
Vol 20 (1) ◽  
pp. 256-266 ◽  
Author(s):  
Ziari Hasan ◽  
Behbahani Hamid ◽  
Izadi Amir ◽  
Nasr Danial

Author(s):  
Chris Alexander

Although composite materials are used to repair and reinforce a variety of anomalies in high pressure transmission gas and liquid pipelines, there continues to be widespread debate regarding what constitutes a long-term composite repair. The United States regulations require that composite repairs must be able to permanently restore the serviceability of the repaired pipeline, while in contrast the Canadian regulations take a more prescriptive approach by integrating the ASME PCC-2 and ISO 24817 composite repair standards along with a requirement for establishing a 50-year design life. In this paper the author provides a framework for what should be considered in qualifying a composite repair system for long-term performance by focusing on the critical technical aspects associated with a sound composite repair. The presentation includes a discussion on establishing an appropriate composite design stress using the existing standards, using full-scale testing to ensure that stresses in the repair do not exceed the designated composite design stresses, and guidance for operators in how to properly integrate their pipeline operating conditions to establish a design life. By implementing the recommendations presented in this paper, operators will be equipped with a resource for objectively evaluating the composite repair systems used to repair their pipeline systems.


2003 ◽  
Vol 1832 (1) ◽  
pp. 217-223 ◽  
Author(s):  
Donald E. Watson

Stone matrix asphalt (SMA) and Superpave® represent relatively new mix design technologies in the United States. Therefore, a condition survey was conducted of mixes that had been in service for several years to evaluate the long-term performance of SMA and Superpave projects. This study is a follow-up to a 1995 review of SMA projects and a 1998 review of Superpave projects. Both SMA and Superpave are acknowledged to be rut-resistant mixes, and this resistance was shown to be the case during this project review. However, a significant amount of cracking occurred early in the life of some of these mixtures. Overall, the SMA mixtures appeared to be more durable than the Superpave mixtures evaluated. The SMA mixtures have been in place about 2½ years longer than the Superpave mixtures, but the overall condition is about the same. Some of the primary conclusions from the survey are as follows: both SMA and Superpave mixtures were shown to be rut-resistant even when placed on facilities with high traffic volume; much of the observed cracking, especially load cracking, appeared to be more related to problems other than mix design or material properties; and SMA mixtures can be expected to last longer than Superpave mixtures before reaching the same condition level.


2020 ◽  
Vol 4 ◽  
pp. 110-121 ◽  
Author(s):  
Claire White

Alternative (i.e., non-Portland) cements, such as alkali-activated materials, have gained significant interest from the scientific community due to their proven CO2 savings compared with Portland cement together with known short-term performance properties. However, the concrete industry remains dominated by Portland cement-based concrete. This Letter explores the technical and non-technical hurdles preventing implementation of an alternative cement, such as alkali-activated materials, in the concrete industry and discusses how these hurdles can be overcome. Specifically, it is shown that certain technical hurdles, such as a lack of understanding how certain additives affect setting of alkali-activated materials (and Portland cement) and the absence of long-term in-field performance data of these sustainable cements, can be mitigated via the use of key molecular- and nano-scale experimental techniques to elucidate dominant material characteristics, including those that control long-term performance. In the second part of this Letter the concrete industry is compared and contrasted with the electricity generation industry, and specifically the transition from one dominant technology (i.e., coal) to a diverse array of energy sources including renewables. It is concluded that financial incentives and public advocacy (akin to advocacy for renewables in the energy sector) would significantly enhance uptake of alternative cements in the concrete industry.


1989 ◽  
Vol 6 (4) ◽  
pp. 183-185
Author(s):  
David I. Maass ◽  
Andrea N. Colgan ◽  
N. Lynn Cochran ◽  
Carl L. Haag ◽  
James A. Hatch

Abstract Long-term performance of container-grown seedlings in Maine was unknown in the late 1970s. A study was established to test the performance of five conifer species: Norway, white and black spruce, and red and jack pine, grown in four containers of similar volume: Can-Am Multipot #1, Multipot #2, Japanese Paperpot FH408, and Styroblock 4. Seven years after outplanting, stem heights of jack pine and red pine were significantly greater for trees started in Multipot #2 containers. Three spruce species with the greatest growth were started in Multipot #1 containers. Paperpot seedlings ranked second in height for pines, Norway spruce, and white spruce; Styroblock 4's ranked last for all species. North. J. Appl. For. 6:183-185, December 1989.


2017 ◽  
Vol 744 ◽  
pp. 97-104
Author(s):  
Fei Chen ◽  
Ke Zhong ◽  
Xiao Hao Wei

In order to verify the practical application of ERS steel deck pavement system, based on the project of Jia Shao bridge, the pavement accelerated loading system is used to test the long-term performance of the steel bridge deck pavement. Tests find that the absolute value of the average rut growth depth of ERS and ERN is less than 5mm when the number of axle loads is 2.05 million times. After more than 1.3 million loading tests, the two deck pavement structures are almost impermeable to water and their anti-skid properties also tend to be stable. The results show that ERS and ERN are not cracked under natural conditions and have excellent anti-rutting performance.


Author(s):  
SHIHUI SHEN ◽  
WEIGUANG ZHANG ◽  
SHENGHUA WU ◽  
LOUAY MOHAMMAD ◽  
BALASINGAM MUHUNTHAN

Author(s):  
Shenghua Wu ◽  
Weiguang Zhang ◽  
Shihui Shen ◽  
Balasingam Muhunthan

Water-containing and water-based foaming warm mix asphalt (WMA) technologies have been widely used in recent years but their long-term field performance is scarcely documented. This paper summarizes the field performances of six water-containing foaming and 10 water-based foaming WMA pavements across the United States and compares them with corresponding hot mix asphalt (HMA) pavements. Two series of field distress surveys were conducted to measure wheel-path longitudinal cracking, transverse cracking, and rut depth. Field cores were extracted to measure the in-place air void content, aggregate gradation, and asphalt content. The volumetric properties and field performance of foaming WMA and HMA control pavements were evaluated. The foaming WMA pavements showed slightly higher in-place air void (i.e., lower in-place density) than the HMA pavements. It was also found that the foaming WMA pavements in general had comparable or more wheel-path longitudinal cracking than the HMA pavements. The long-term field performance of foaming WMA pavements for transverse cracking and rutting were found to be similar to control HMA pavements. The study also reinforced the importance of in-place air void and asphalt content, finding that slightly higher asphalt content and lower in-place air void content may be beneficial for long-term resistance to cracking of asphalt pavements. As a result of the findings, the optimal pavement maintenance time was estimated to be four to five years since paving for full-depth pavement projects.


2021 ◽  
Vol 6 (4) ◽  
pp. 123-130
Author(s):  
Aleksandr V. Korytov ◽  
Oleg A. Botkin ◽  
Aleksandr V. Knyazev ◽  
Petr V. Zimin ◽  
Dmitriy P. Patrakov ◽  
...  

Background. The study performed by Rosneft employees shown in this paper demonstrates approach and analytical methods that allows to forecast oil production at the level of minimal infrastructure units. These approaches are used to forecast long-term oil production and predict infrastructure blockage. The approach was partially automated by the authors. This made it possible to testing at giant Krasnoleninskoye oilfield. Aim. The study was performed in order to develop and test an approaches to forecast oil production of large oil fields with high detail levels. Materials and methods. Common methods of decline curve analysis and water-into-oil curve analysis were used in this work to analyze the precondition. The main feature of the approach is the analysis of precondition at the level of large well clusters and transfer it to the level of wells. Some of the actions were automated by new proprietary software and were tested at the giant brown field. The software was integrated with the corporate database. Results. An author’s approach has been developed. The approach allows to forecast oil production at the level of infrastructure units using analytical methods. Oil production of the giant brown field with high detail levels were forecasted using the proposed approaches and developed software. Conclusions. The results show that the developed approaches and software can be used to forecast mediumand long-term performance of producing oil fields in the conditions of existing external and infrastructural constraints.


Sign in / Sign up

Export Citation Format

Share Document