Field Performance of Foaming Warm Mix Asphalt Pavement

Author(s):  
Shenghua Wu ◽  
Weiguang Zhang ◽  
Shihui Shen ◽  
Balasingam Muhunthan

Water-containing and water-based foaming warm mix asphalt (WMA) technologies have been widely used in recent years but their long-term field performance is scarcely documented. This paper summarizes the field performances of six water-containing foaming and 10 water-based foaming WMA pavements across the United States and compares them with corresponding hot mix asphalt (HMA) pavements. Two series of field distress surveys were conducted to measure wheel-path longitudinal cracking, transverse cracking, and rut depth. Field cores were extracted to measure the in-place air void content, aggregate gradation, and asphalt content. The volumetric properties and field performance of foaming WMA and HMA control pavements were evaluated. The foaming WMA pavements showed slightly higher in-place air void (i.e., lower in-place density) than the HMA pavements. It was also found that the foaming WMA pavements in general had comparable or more wheel-path longitudinal cracking than the HMA pavements. The long-term field performance of foaming WMA pavements for transverse cracking and rutting were found to be similar to control HMA pavements. The study also reinforced the importance of in-place air void and asphalt content, finding that slightly higher asphalt content and lower in-place air void content may be beneficial for long-term resistance to cracking of asphalt pavements. As a result of the findings, the optimal pavement maintenance time was estimated to be four to five years since paving for full-depth pavement projects.

Author(s):  
John Harvey ◽  
Bor-Wen Tsai

An investigation of the effects of long-term oven aging (LTOA) on initial stiffness and fatigue of asphalt concrete was made using two typical California asphalts, known to have different aging characteristics, in mixes with one aggregate. Asphalt content, air-voids content, and days of LTOA were varied independently. Stiffness and fatigue were evaluated using the controlled-strain flexural beam test developed by the Strategic Highway Research Program Project A-003A. The results indicated that both mixes exhibited an increase in initial stiffness with LTOA periods of up to six days. The sensitivity of beam fatigue life to LTOA depended on the asphalt. Beams containing Valley asphalt had virtually no change in fatigue life due to LTOA, whereas beams with Coastal asphalt showed some sensitivity to LTOA. For both asphalts, the average reduction in fatigue life from 6 days of LTOA was less than that caused by a 3 percent increase in air-void content or a 1 percent decrease in asphalt content. Simulations of thick and thin pavement structures were performed to reconcile the effects of LTOA, asphalt content, and air-void content on mix fatigue life and stiffness by evaluating their combined effects on predicted pavement fatigue life. The simulations indicated that aging, as induced by LTOA, increased fatigue life for all cases except one.


Author(s):  
SHIHUI SHEN ◽  
WEIGUANG ZHANG ◽  
SHENGHUA WU ◽  
LOUAY MOHAMMAD ◽  
BALASINGAM MUHUNTHAN

2017 ◽  
Author(s):  
Washington State University ◽  
Louisiana Transportation Research Center ◽  
Pennsylvania State University—Altoona ◽  
◽  
◽  
...  

Author(s):  
John T. Harvey ◽  
Bor-Wen Tsai

The primary objective of most procedures for asphalt concrete mix design is to find an asphalt content that minimizes the possibility of stability failure while providing adequate fatigue and other durability characteristics. To date, the consequences of asphalt content selection and construction compaction on fatigue performance and flexural stiffness have not been thoroughly investigated and documented with experimental data. The results of laboratory-controlled strain flexural beam testing, (i.e., fatigue life and flexural stiffness) for one aggregate and asphalt cement combination, five asphalt contents, and three air void contents are presented. The results clearly indicate the benefits of a lower air void content on both fatigue life and initial stiffness. Increased asphalt content was found to increase fatigue life and reduce stiffness. Alternative models for predicting fatigue life and initial stiffness using asphalt content, air void content, voids filled with bitumen, and the volume concentrations of asphalt and aggregate were evaluated. Elastic-layer theory was used to simulate the effects of air void content and asphalt content on the fatigue life of several example overlays using the models for stiffness and fatigue life from the laboratory testing. The simulations indicated an increase in predicted pavement fatigue life for lower air void contents and higher asphalt contents. Example simulations of the effects of increased asphalt content and decreased air void content at the bottom of thick overlays indicated a marked increase in predicted fatigue life. It was also concluded that stiffness should not be included in regression for fatigue life models for mix design unless there is a clear understanding of the effects of other variables in the model that correlate with both fatigue life and stiffness.


2021 ◽  
Vol 13 (13) ◽  
pp. 2613
Author(s):  
Nectaria Diamanti ◽  
A. Peter Annan ◽  
Steven R. Jackson ◽  
Dylan Klazinga

Density is one of the most important parameters in the construction of asphalt mixtures and pavement engineering. When a mixture is properly designed and compacted, it will contain enough air voids to prevent plastic deformation but will have low enough air void content to prevent water ingress and moisture damage. By mapping asphalt pavement density, areas with air void content outside of the acceptable range can be identified to predict its future life and performance. We describe a new instrument, the pavement density profiler (PDP) that has evolved from many years of making measurements of asphalt pavement properties. This instrument measures the electromagnetic (EM) wave impedance to infer the asphalt pavement density (or air void content) locally and over profiles.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4238
Author(s):  
Piotr Pokorski ◽  
Piotr Radziszewski ◽  
Michał Sarnowski

The paper presents the issue of resistance to permanent deformations of bridge pavements placed upon concrete bridge decks. In Europe, bridge asphalt pavement usually consists of a wearing course and a protective layer, which are placed over the insulation (waterproofing). Protective layers of bridge pavement are commonly constructed using low air void content asphalt mixes as this provides the suitable tightness of such layers. Due to increased binder content, asphalt mixes for bridge pavement may have reduced resistance to permanent deformations. The article presents test results of resistance to permanent deformations of asphalt mixes for the protective layers. In order to determine the composition of mixtures with low air void content and resistance to permanent deformation, an experimental design was applied using a new concept of asphalt mix composition. Twenty-seven different asphalt mixture compositions were analyzed. The mixtures varied in terms of binder content, sand content and grit ratio. Resistance to permanent deformation was tested using the laboratory uniaxial cyclic compression method (dynamic load creep). On the basis of experimental results and statistical analysis, the functions of asphalt mixture permanent deformation resistance were established. This enabled a determination of suitable mixture compositions for protective layers for concrete bridge decks.


CORROSION ◽  
2012 ◽  
Vol 68 (3) ◽  
pp. 035007-1-035007-13 ◽  
Author(s):  
S.R. Taylor ◽  
F. Contu ◽  
L.M. Calle ◽  
J.P. Curran ◽  
W. Li

Author(s):  
Jose Rivera-Perez ◽  
Hasan Ozer ◽  
Imad L. Al-Qadi

The Illinois Department of Transportation adopted the Illinois Flexibility Index Test (I-FIT) to evaluate the cracking vulnerability of asphalt concrete (AC) mixtures that was often shown to increase with the addition of recycled materials such as reclaimed asphalt pavement and recycled asphalt shingles. The test consists of a semi-circular AC sample that has a notch, loaded along the symmetric axis. Fracture energy (FE), post-peak slope, and the flexibility index (FI) are computed from the load displacement curve. These results can be influenced by specimen geometry and test parameters such as loading rate, AC voids content, and so forth. Therefore, this study investigated the effect of notch length, specimen thickness, loading rate, and AC air void content on the I-FIT results. It was found that an increase in the specimen thickness or loading rate resulted in a steeper post-peak slope without affecting the FE. As a result, the FI decreased. An increase in the notch length or AC air void content resulted in a flatter post-peak slope, thus, increasing the FI. From the results, it was concluded that existing correction factors to address the variations caused by specimen thickness and air void content are appropriate. A correction factor to address notch length variations is proposed. A unique correction factor for loading rate could not be developed because of the varying rate dependency of each AC mixture.


Sign in / Sign up

Export Citation Format

Share Document