Stone Pavement Analysis using Building Information Modeling

Author(s):  
Salvatore Antonio Biancardo ◽  
Cristina Oreto ◽  
Nunzio Viscione ◽  
Francesca Russo ◽  
Gigliola Ausiello ◽  
...  

The growing need to recover and digitally represent heritage infrastructure has led to the challenge of choosing different Building Information Modeling (BIM) platforms that will be used to manage the implementation of the semi-automatic design and reconstruction processes of reverse engineering modeling. The approach to the integrated management of information derived through Heritage-BIM (H-BIM) has been applied to Via del Duomo, one of the main roads in the old town of Naples, Italy. During preliminary inspections of the construction site it was possible to acquire geometric features and pavement/subgrade information, as well as to conduct a photographic survey, with 1,618 photographs collected. Subsequently, the acquired data were processed, using different BIM-based tools, to obtain the 3D mesh; objects were then converted from pure graphic solids into parametric entities by proposing a specific algorithm. Then a library, with the inclusion of all the possible stone paving package alternatives, including all the structural and stress-deforming characteristics such as Young Modulus (E), Poisson coefficient (n), and Safety factor (SF), was created. In this way, it is possible to associate to the generic element the optimal pavement package solution, depending on different construction contexts. As preliminary result, a dynamic model that updates its information package and modifies the output of the analysis every time the data worksheet is integrated with new collected results is proposed for further pavement management operations evaluation.

2020 ◽  
Vol 4 (1) ◽  
pp. 19-34
Author(s):  
Pratheesh Kumar M. R. ◽  
Reji S. ◽  
Abeneth S. ◽  
Pradeep K.

Defect management in civil construction work is crucial. This work is aimed at analyzing the conventional method of construction defect management and to bring out a framework for integrating 5D building information modeling with mixed reality. This work is divided into three parts. The first part is the integration of 5D building information modeling with augmented reality that helps to understand the architectural concepts and visualize the workflow onsite. The second part of the work is to develop a user-defined target-based marker-less augmented reality to send screenshots of augmented models and exact progress of work from construction site to engineers working in other locations. The third part of the work is to integrate virtual reality to enable virtual tours of the real site that will be useful for the customers to visualize the building virtually and for the builders to promote sales.


Author(s):  
Robertas Kontrimovičius ◽  
Leonas Ustinovičius ◽  
Mantas Vaišnoras

Aim of the article: to create a prototype of an information system of an optimized site plan using virtual reality technology (VRT). The article consists of two parts. The first part: the review of the literary sources used; a comparative analysis of the existing models of the construction site plans. Second part: the description of the prototype development of the information system (the algorithm) using building information modeling (BIM), and VRT.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Maha Hosny Elgewely ◽  
Wafaa Nadim ◽  
Ahmad ElKassed ◽  
Mohamed Yehiah ◽  
Mostafa Alaa Talaat ◽  
...  

PurposeThis research proposes a virtual reality (VR) platform for construction detailing that provides experiential learning in a zero-risk environment. It builds on integrating VR technology as a medium and building information modeling (BIM) as a repository of information and a learning tool.Design/methodology/approachThis work discusses the proposed environment curricular unit prototype design, implementation and validation. The validation of the VR environment was conducted in three phases, namely, piloting, testing (system usability and immersion) and learning gain validation, each of which has its aim and outcomes and has been assessed both qualitatively and quantitatively.FindingsAfter considering the feedback, the VR environment prototype is then validated on the level of learning outcomes, providing the evidence that it would enhance students' engagement, motivation and achievement accordingly. The results indicated 30% learning progress after experiencing the VR environment vs. 13.8% for paper-based studying.Originality/valueIn reference to building construction education, construction site visits provide students with real-life practical experience which are considered an extension for classroom. Nevertheless, it is challenging to integrate construction site visits regularly during the academic semester with respect to the class specific needs. The research at hand adopts integrating VR and BIM in AEC (Architecture, Engineering and Construction) education by proposing a system that can work as a mainstream complementary construction detailing learning method for architecture students. The proposed VR system facilitates a virtual construction site that meets the learning needs where students can explore and build in a real scale environment.


Sign in / Sign up

Export Citation Format

Share Document