scholarly journals Gender Differences in Academic Efficacy across STEM Fields

2021 ◽  
pp. 073112142110286
Author(s):  
Jennifer Ashlock ◽  
Miodrag Stojnic ◽  
Zeynep Tufekci

Cultural processes can reduce self-selection into math and science fields, but it remains unclear how confidence in computer science develops, where women are currently the least represented in STEM (science, technology, engineering, and mathematics). Few studies evaluate both computer skills and self-assessments of skill. In this paper, we evaluate gender differences in efficacy across three STEM fields using a data set of middle schoolers, a particularly consequential period for academic pathways. Even though girls and boys do not significantly differ in terms of math grades and have similar levels of computer skill, the gender gap in computer efficacy is twice as large as the gap for math. We offer support for disaggregation of STEM fields, so the unique meaning making around computing can be addressed.

2020 ◽  
Vol 110 ◽  
pp. 241-244
Author(s):  
Jana Gallus ◽  
Emma Heikensten

Organizations miss out if their smartest members do not bring their ideas to the table. Gallus and Heikensten (2019) establish that gender differences play an important role for female participation in STEM fields (science, technology, engineering, and math). Moreover, they show that these differences can be eliminated by providing suitable forms of social recognition via awards. This article focuses on self-stereotyping and explores its role as a mechanism behind the effect of recognition on the gender gap in the tendency to speak up.


2018 ◽  
Vol 11 (2) ◽  
pp. 314-318 ◽  
Author(s):  
Stefanie Gisler ◽  
Anne E. Kato ◽  
Soohyun Lee ◽  
Desmond W. Leung

We wholeheartedly agree with Miner et al. (2018) that industrial and organizational (I-O) psychologists should take a lead in addressing gender inequity in science, technology, engineering, and mathematics (STEM) fields. The focal article is particularly timely in light of the recent controversial “Google memo” (Damore, 2017), in which a senior software engineer endorsed the same individual-level myths regarding the gender gap in STEM that were critiqued by Miner et al. (2018). However, we caution against painting all STEM fields with the same broad brush. We argue that it is critical for I-O psychologists to be aware of important differences between STEM subfields, as these distinctions suggest that a “one-size-fits-all” approach may be inadequate for addressing existing gender disparities in STEM. In order to be maximally effective, interventions may need to emphasize distinct issues and target different points in the career pipeline depending on the specific STEM subfield in question.


2018 ◽  
Vol 7 (2) ◽  
pp. 148-153 ◽  
Author(s):  
Anni Reinking ◽  
Barbara Martin

The 2010 President’s Council of Advisors on Science and Technology indicated that there was a need to provide individuals with strong STEM (Science, Technology, Engineering, and Mathematics) backgrounds in order to be a competitive country internationally. Additionally, it has been found that there is a gender gap in STEM related fields. Therefore, this article describes theories related to the gender gap in the STEM field and ways to engage girls in STEM related fields in order to close the gender gap. The researchers of this study did extensive research to review the current literature, condense and summarize the findings from various studies, and provide steps for educators to engage in that will create an early atmosphere of positive learning environments for girls to be curious about STEM concepts.  


2018 ◽  
Vol 55 (4) ◽  
pp. 801-835 ◽  
Author(s):  
Sabrina M. Solanki ◽  
Di Xu

Recruiting more female faculty has been suggested as a policy option for addressing gender disparities in science, technology, engineering, and mathematics (STEM) fields given its ability to engage female students through a role model effect. While a small but growing body of literature has examined the role of instructor gender at the higher education level, it typically focuses only on academic outcomes. This paper utilizes a unique data set that includes not only information about student course performance in STEM but also a number of motivation-related measures. We find that having a female instructor narrows the gender gap in terms of engagement and interest; further, both female and male students tend to respond to instructor gender. We conclude by discussing the policy implications of these findings.


2018 ◽  
Vol 44 (6) ◽  
pp. 881-898 ◽  
Author(s):  
Erin McPherson ◽  
Bernadette Park ◽  
Tiffany A. Ito

Self-to-prototype matching is a strategy of mental comparisons between the self-concept and the typical or “representative” member of a group to make some judgment. Such a process might contribute to interest in pursuing a science career and, relatedly, women’s underrepresentation in physical science, technology, engineering, and mathematics (pSTEM) fields. Across four studies, we measured self–scientist discrepancies on communal, agentic, and scientific dimensions, and assessed participants’ interest in a science career. The most consistent predictor of science interest was the discrepancy between self and scientist on the scientific dimension (e.g., intelligent, meticulous). Study 4 established that students with larger self–scientist discrepancies also had less accurate perceptions of students pursuing science, and that inaccuracy was related to lower science interest. Thus, students with lower science interest do not just perceive scientists differently from themselves but also erroneously. Discrepancy and inaccuracy together explained a significant portion of the gender gap in pSTEM interest.


2021 ◽  
pp. 016235322110445
Author(s):  
A. Kadir Bahar

Analyzing the test scores of more than 10,000,000 students who participated in the Advanced Placement (AP) math exams from 1997 to 2019, this study examined the direction and magnitude of the trend in gender disparity by race in participation in and top achievement on AP Calculus AB, Calculus BC, and Statistics exams. The results of this study indicated that, in general, females’ representation in all three AP exams increased significantly. Although the findings indicated that the female-to-male ratios (FMRs) in participation in the AP math exams increased significantly from 1997 to 2019 and favored females for all races, the gender disparities among top achievers for all math exams are still substantial. The relationships between the FMRs in participation and top achievement for all AP math exams were also analyzed within races, and the possible impacts of these findings within the context of the underrepresentation of women in science, technology, engineering, and mathematics (STEM) fields were also discussed.


Author(s):  
Pamela M. Leggett-Robinson ◽  
Brandi Campbell Villa

In 1976, the challenges faced by women of color who pursue careers in science, technology, engineering, and mathematics (STEM) fields were first brought to national attention. Forty-two years later, the authors re-examine the challenges, barriers, and successes of women of color in STEM higher education. This chapter examines the landscape of the STEM professoriate through a literature review (journals, trade magazines, theses, and dissertations) and reflective shorts and quotes from women of color navigating the STEM professoriate. The literature review spans a 10-year period (2008-2018). Both the review and the reflections focus on the areas of STEM belonging, self-presentation, stereotyping, institutional racism, discrimination, and tokenism as challenges faced by women of color in the STEM professoriate. Additionally, mechanisms used by women of color to navigate and succeed despite these barriers, such as mentoring, are explored throughout.


2019 ◽  
Vol 18 (3) ◽  
pp. mr3
Author(s):  
Daniel L. Reinholz ◽  
Tessa C. Andrews

There has been a recent push for greater collaboration across the science, technology, engineering, and mathematics (STEM) fields in discipline-based education research (DBER). The DBER fields are unique in that they require a deep understanding of both disciplinary content and educational research. DBER scholars are generally trained and hold professional positions in discipline-specific departments. The professional societies with which DBER scholars are most closely aligned are also often discipline specific. This frequently results in DBER researchers working in silos. At the same time, there are many cross-cutting issues across DBER research in higher education, and DBER researchers across disciplines can benefit greatly from cross-disciplinary collaborations. This report describes the Breaking Down Silos working meeting, which was a short, focused meeting intentionally designed to foster such collaborations. The focus of Breaking Down Silos was institutional transformation in STEM education, but we describe the ways the overall meeting design and structure could be a useful model for fostering cross-­disciplinary collaborations around other research priorities of the DBER community. We describe our approach to meeting recruitment, premeeting work, and inclusive meeting design. We also highlight early outcomes from our perspective and the perspectives of the meeting participants.


2020 ◽  
pp. 153819272091836
Author(s):  
Elsa Gonzalez ◽  
Cecilia Contreras Aguirre ◽  
Joenie Myers

This study examined the success and persistence of Latina students in the complex environment of science, technology, engineering, and mathematics (STEM) fields at a Tier 1 Research higher education institution in Texas. For this qualitative study, 10 Latina students pursuing STEM majors were interviewed within a framework focusing on Greene’s resilience theory. Results of this study suggest a strong likelihood for Latinas to succeed in STEM fields because of their development of resilience.


2020 ◽  
pp. 089484532090179
Author(s):  
Ellen Hawley McWhirter ◽  
Rachel Gali Cinamon

Women and members of many ethnic minority groups continue to be significantly underrepresented in science, technology, engineering, and mathematics (STEM) education and work settings. In this article, we propose that Gloria Anzaldúa’s concepts of nepantla and nepantleras/os can be used to enrich perspectives on underrepresentation among those studying, working, and persisting in STEM fields. We describe how diversity practices may fail to address and foster inclusion in STEM education and workplaces and link inclusion and belonging to engagement and retention in STEM. Recommendations are offered for combining top-down and bottom-up strategies providing information, awareness, and skills training in STEM environments, including recognizing and engaging the insights and experiences of nepantleras/os.


Sign in / Sign up

Export Citation Format

Share Document