An experimental review on the mechanical properties and hygrothermal behaviour of fibre metal laminates

2016 ◽  
Vol 36 (1) ◽  
pp. 72-82 ◽  
Author(s):  
M Chandrasekar ◽  
MR Ishak ◽  
M Jawaid ◽  
Z Leman ◽  
SM Sapuan
2019 ◽  
Vol 35 (6) ◽  
pp. 661-668 ◽  
Author(s):  
Aboubakr Medjahed ◽  
Mehdi Derradji ◽  
Abdeldjalil Zegaoui ◽  
Ruizhi Wu ◽  
Bingcheng Li

2013 ◽  
Vol 837 ◽  
pp. 296-301
Author(s):  
Sławomir Zolkiewski

The fibre-metal laminates made of a steel plate and fibreglass laminate plate were tested in the special laboratory stands. Epoxy resin and polyester resin were used as matrix to fabricate the composites. The fibre-metal laminates combine advantages of metals and laminates. These materials have very good force versus displacement characteristics and overall mechanical properties. They are very popular and widely applied in technical systems. They can be put to use in connecting materials made of various fabrics, connecting high number layer laminates and most of all connecting metals and laminates. In this paper there are the results of testing fibrous composite materials connected in bolt joints presented. Composite materials reinforced with fiberglass, carbon and aramid fibers are considered. The impact of number of applied bolts in a joint on strength properties was investigated. The connections by means of eight or sixteen bolts were compared. A major problem of modelling the composites is assuming physical and material parameters of the analyzed elements.


2021 ◽  
Vol 33 ◽  
pp. 824-831
Author(s):  
Costanzo Bellini ◽  
Vittorio Di Cocco ◽  
Francesco Iacoviello ◽  
Larisa Patricia Mocanu

2020 ◽  
pp. 073168442095671
Author(s):  
Ng Lin Feng ◽  
Sivakumar Dhar Malingam ◽  
Chen Wei Ping

Fibre metal laminates are advanced sandwich materials that offer various outstanding properties over conventional metallic alloys and composites. This research study intends to investigate the effects of weaving architectures and stacking configurations on the mechanical properties of fibre metal laminates based on kenaf/pineapple leaf fibre. Fibre metal laminates were fabricated through the hot moulding compression technique. Mechanical tests were performed on the kenaf/pineapple leaf fibre-based fibre metal laminates. In accordance with the findings obtained, hybridisation had led to the improvement in the mechanical properties of fibre metal laminates in comparison with [K/K/K] fibre metal laminates. Overall, twill woven-ply [P/P/P] fibre metal laminates showed the highest tensile and flexural strength, which was 14.53% and 33.50% higher than twill woven-ply [K/K/K] fibre metal laminates, respectively. Besides, the twill woven-ply [P/P/P] fibre metal laminates also displayed the highest impact strength and indentation properties compared to other non-hybrid and hybrid fibre metal laminates. When comparing the fibre metal laminates with different weaving architectures, twill woven-ply fibre metal laminates were shown to have higher mechanical properties over those of plain woven-ply fibre metal laminates.


During the last two decades, the concept of Fibre Metal Laminates (FMLs) has been evolved to find solution to the requirement of improving mechanical properties and reducing structural weight of elemental components of aircraft structures. In this work FML is prepared using Al 2024 by placing alternately with glass/carbon/aramid Fibres. From experimental results of FML shows greater advantage in mechanical properties then aluminium monolithic layer and this composite fibre laminates individual. The FMLs tested in this work were made of 3 layers of 2024 T3 aluminium alloy 0.28 mm thickness and fibre mats. The 5-3/2 laminates of size 300x300 mm with 3 mm thick were prepared using Vacuum Assisted Resin Transfer Moulding (VARTM) in cold compaction and test specimen were cut by using abrasive water jet machining as per ASTM Standards. The adhesion between fibre and metal layer will play a major role in strength of FML. By keeping this in consideration FMLs were prepared without blow holes and capable of withstanding delamination while preparing specimens through water jet and during various tests employed. The fracture surfaces of destructed specimens are studied with help Scanning Electron Microscope (SEM) image. Similarly, the numerical simulation of all the tests were done using Ansys APDL 10.0 Software. It is observed that aramid FML have substantially stronger in longitudinal directions. Hence, more priority given in this paper to investigate tensile strength and fatigue life of aramid FML.


Sign in / Sign up

Export Citation Format

Share Document