scholarly journals Development and Experimental Characterization of Fibre Metal Laminates to Predict the Fatigue Life

During the last two decades, the concept of Fibre Metal Laminates (FMLs) has been evolved to find solution to the requirement of improving mechanical properties and reducing structural weight of elemental components of aircraft structures. In this work FML is prepared using Al 2024 by placing alternately with glass/carbon/aramid Fibres. From experimental results of FML shows greater advantage in mechanical properties then aluminium monolithic layer and this composite fibre laminates individual. The FMLs tested in this work were made of 3 layers of 2024 T3 aluminium alloy 0.28 mm thickness and fibre mats. The 5-3/2 laminates of size 300x300 mm with 3 mm thick were prepared using Vacuum Assisted Resin Transfer Moulding (VARTM) in cold compaction and test specimen were cut by using abrasive water jet machining as per ASTM Standards. The adhesion between fibre and metal layer will play a major role in strength of FML. By keeping this in consideration FMLs were prepared without blow holes and capable of withstanding delamination while preparing specimens through water jet and during various tests employed. The fracture surfaces of destructed specimens are studied with help Scanning Electron Microscope (SEM) image. Similarly, the numerical simulation of all the tests were done using Ansys APDL 10.0 Software. It is observed that aramid FML have substantially stronger in longitudinal directions. Hence, more priority given in this paper to investigate tensile strength and fatigue life of aramid FML.

2019 ◽  
Vol 35 (6) ◽  
pp. 661-668 ◽  
Author(s):  
Aboubakr Medjahed ◽  
Mehdi Derradji ◽  
Abdeldjalil Zegaoui ◽  
Ruizhi Wu ◽  
Bingcheng Li

Author(s):  
K. Logesh ◽  
V.K Bupesh Raja ◽  
C. Krishnaraj

Innovations and research in material processing have brought forward new and improvised materials that are applied in body panels of automobiles, aircraft cabins and railway wagons. These materials are used widely is because of their good mechanical properties and their high strength to weight ratio. In this paper Fibre Metal Laminates (FMLs) were added with organo modified montmorillonite (MMT) commonly known as nanoclay along with epoxy resin. The homogeneous dispersion of nanoclay in epoxy resin is accomplished by a hand stirrer dispersion method in ethanol. The FML material was processed by hand layup method. In this study the aluminium alloy 5052-H32 was used as a skin material and glass fibre (woven roving) used as core material which is bounded by epoxy with 5 wt.% nano clay (closet 30B). The fabricated sandwich material was cut by using water jet machine as per IS standards for testing. The fabricated material subjected to erichsen cupping test and was observed under Scanning Electron Microscope (SEM). The results from SEM image analysis indicated that the FML had fibre pull out and surface cracks were obtained in the skin material. Progressive loading resulted in ductile fracture which is absorbed in the specimen. Fibres came across brittle failure and the skin through ductile fracture. Non-uniform distribution of reinforcement is observed in the material, SEM micrographs revealed fibre cracks which were oriented in line to the direction of crack growth on the skin material. This study shows that these fibre metal laminates can be safely applied in automotive field.


2013 ◽  
Vol 837 ◽  
pp. 296-301
Author(s):  
Sławomir Zolkiewski

The fibre-metal laminates made of a steel plate and fibreglass laminate plate were tested in the special laboratory stands. Epoxy resin and polyester resin were used as matrix to fabricate the composites. The fibre-metal laminates combine advantages of metals and laminates. These materials have very good force versus displacement characteristics and overall mechanical properties. They are very popular and widely applied in technical systems. They can be put to use in connecting materials made of various fabrics, connecting high number layer laminates and most of all connecting metals and laminates. In this paper there are the results of testing fibrous composite materials connected in bolt joints presented. Composite materials reinforced with fiberglass, carbon and aramid fibers are considered. The impact of number of applied bolts in a joint on strength properties was investigated. The connections by means of eight or sixteen bolts were compared. A major problem of modelling the composites is assuming physical and material parameters of the analyzed elements.


Author(s):  
Marc Grzeschik

Foldcores are folded open cellular structures which are currently under development at Institute of Aircraft Design (IFB). The IFB has generated an integrated manufacturing process to produce foldcores, starting with the mathematical methods to design the required foldcore geometry to the point of realizing them in an automated and continuous fashion. By isometric folding of planar base materials foldcores can and have already been manufactured out of a large variety of materials: cardboard, papers, metals (aluminum, steel, titanium), different thermoplastic films (PC, PVC, PPSU, PEEK) as well as advanced fibre reinforced materials (glass, carbon, aramid fibres). For the technical use of foldcores in sandwich structures it is necessary to supply a competitive level of mechanical performance. We discuss the mechanical properties of foldcores compared to other state of the art core materials. We detail the testing methods used to determine compression and shear strengths and stiffnesses, which are based upon international standards. Evaluation of the test results show potential for the use of foldcores in high performance lightweight structures, especially considering their unique multifunctional applicability.


2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Barbara Surowska ◽  
Konrad Dadej ◽  
Patryk Jakubczak ◽  
Jarosław Bieniaś

AbstractFibre metal laminates (FMLs) are attractive construction materials, especially for use in aerospace and transport facilities. Throughout their service life, thin-walled structures made of FMLs are exposed to static and dynamic loads, as well as corrosion and the unfavourable influence of environmental conditions. The paper presents an experimental analysis of the combined mechanical and environmental long-term behaviour of carbon-based fibre metal laminates and their variants with protective glass layers. The Al alloy/CFRP and Al alloy/GFRP/CFRP laminates in a 3/2 configuration were used. The tested laminates were subjected to 1500 thermal cycles with a temperature range of 130 °C. The static and fatigue interlaminar shear strengths were tested before and after thermal conditioning. It was shown that the stable stiffness reduction in the tested laminates was observed with increasing fatigue cycles, due to the progressive fatigue damage accumulation. The thermally cycled laminates feature slightly smoother stiffness loss, while a more rapid decrease was observed in thermally untreated laminates. Moreover, the fatigue life of the tested laminates subjected to thermal cycling revealed nine times fewer fatigue cycles of laminates with glass protectors after thermal cycles in comparison to the laminates not subjected to thermal cycling.


2021 ◽  
Vol 33 ◽  
pp. 824-831
Author(s):  
Costanzo Bellini ◽  
Vittorio Di Cocco ◽  
Francesco Iacoviello ◽  
Larisa Patricia Mocanu

Sign in / Sign up

Export Citation Format

Share Document