scholarly journals Microarray Analysis of Natural Socially Regulated Plasticity in Circadian Rhythms of Honey Bees

2012 ◽  
Vol 27 (1) ◽  
pp. 12-24 ◽  
Author(s):  
Sandra L. Rodriguez-Zas ◽  
Bruce R. Southey ◽  
Yair Shemesh ◽  
Elad B. Rubin ◽  
Mira Cohen ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Michael C. Tackenberg ◽  
Manuel A. Giannoni-Guzmán ◽  
Erik Sanchez-Perez ◽  
Caleb A. Doll ◽  
José L. Agosto-Rivera ◽  
...  

Abstract Honey bees are critical pollinators in ecosystems and agriculture, but their numbers have significantly declined. Declines in pollinator populations are thought to be due to multiple factors including habitat loss, climate change, increased vulnerability to disease and parasites, and pesticide use. Neonicotinoid pesticides are agonists of insect nicotinic cholinergic receptors, and sub-lethal exposures are linked to reduced honey bee hive survival. Honey bees are highly dependent on circadian clocks to regulate critical behaviors, such as foraging orientation and navigation, time-memory for food sources, sleep, and learning/memory processes. Because circadian clock neurons in insects receive light input through cholinergic signaling we tested for effects of neonicotinoids on honey bee circadian rhythms and sleep. Neonicotinoid ingestion by feeding over several days results in neonicotinoid accumulation in the bee brain, disrupts circadian rhythmicity in many individual bees, shifts the timing of behavioral circadian rhythms in bees that remain rhythmic, and impairs sleep. Neonicotinoids and light input act synergistically to disrupt bee circadian behavior, and neonicotinoids directly stimulate wake-promoting clock neurons in the fruit fly brain. Neonicotinoids disrupt honey bee circadian rhythms and sleep, likely by aberrant stimulation of clock neurons, to potentially impair honey bee navigation, time-memory, and social communication.


2020 ◽  
Author(s):  
Manuel A. Giannoni-Guzmán ◽  
Emmanuel Rivera ◽  
Janpierre Aleman-Rios ◽  
Alexander M. Melendez Moreno ◽  
Melina Perez Ramos ◽  
...  

AbstractHoney bees utilize their circadian rhythms to accurately predict the time of day. This ability allows foragers to remember the specific timing of food availability and its location for several days. Previous studies have provided strong evidence toward light/dark cycles being the primary Zeitgeber for honey bees. Recent work in our laboratory described large individual variation in the endogenous period length of honey bee foragers from the same colony and differences in the endogenous rhythms under different constant temperatures. In this study, we further this work by examining temperature inside the honey bee colony. By placing temperature and light data loggers at different locations inside the colony we uncovered that temperature oscillates with a 24-hour period at the periphery of the colony. We then simulated this temperature oscillation in the laboratory and found that using the temperature cycle as a Zeitgeber, foragers present large individual differences in the phase of locomotor rhythms with respect to temperature. Moreover, foragers successfully entrain to these simulated temperature cycles and advancing the cycle by six hours, resulted in changes in the phase of locomotor activity for the most foragers in the assay. The results shown in this study highlight the importance of temperature as a potential Zeitgeber in the field. Future studies will examine the possible functional and evolutionary role of the observed phase differences of circadian rhythms.


2020 ◽  
Vol 42 (2) ◽  
pp. 22-26 ◽  
Author(s):  
Katharina Beer ◽  
Guy Bloch

Circadian rhythms of about a day are ubiquitous in animals and considered functionally significant. Honey bees show remarkable circadian plasticity that is related to the complex social organization of their societies. Forager bees show robust circadian rhythms that support time-compensated sun-compass navigation, dance communication and timing visits to flowers. Nest-dwelling nurse bees care for the young brood around the clock. Here, we review our current understanding of the molecular and neuroanatomical mechanisms underlying this remarkable natural plasticity in circadian rhythms.


2020 ◽  
Author(s):  
Manuel A. Giannoni-Guzmán ◽  
Janpierre Aleman-Rios ◽  
Alexander M. Melendez Moreno ◽  
Gabriel Diaz Hernandez ◽  
Melina Perez ◽  
...  

AbstractCircadian rhythms in honey bees are involved in various processes that impact colony survival. For example, young nurses take care of the brood constantly throughout the day and lack circadian rhythms, while foragers use the circadian clock to remember and predict food availability in subsequent days. Previous studies suggested that development of circadian rhythms both in the field and the laboratory began around 7-9 days of age. However, not much is understood about the postembryonic development of circadian rhythms in honey bees. In the current study, we examine the effects of socially regulated colony temperature on the ontogeny of circadian rhythms of young workers under controlled laboratory conditions. We hypothesized that temperature plays a key role in the development of circadian rhythmicity in young workers. Our results show that young workers kept at 35°C develop circadian rhythmicity faster and in greater proportion than bees kept at 25°C. In addition, we examine if the effect of colony temperature during the first 48 hours after emergence is enough to observe effects on the rate and proportion of development of circadian rhythmicity. We observed that twice as many individuals that were exposed to 35°C during the first 48 hours develop circadian rhythms compared to individuals kept at 25°C. In addition, we observed differences in the average endogenous period length consistent with temperature compensation of the circadian rhythms between the 25°C and 35°C cohorts. We also observed differences in the degree of period length variation between the 25°C and 35°C cohorts, which combined with the proportion of arrhythmic individuals and survival data suggest that development of circadian rhythms is incomplete in individuals exposed to 25°C adult emergence. This study shows that temperature, which is socially regulated inside the hive, is a key factor that influences the ontogeny of circadian rhythmicity of workers.


Author(s):  
Ada Eban-Rothschild ◽  
Guy Bloch
Keyword(s):  

2020 ◽  
Author(s):  
Michael C. Tackenberg ◽  
Manuel A. Giannoni-Guzmán ◽  
Caleb A. Doll ◽  
José L. Agosto-Rivera ◽  
Kendal Broadie ◽  
...  

AbstractHoney bees are critical pollinators in ecosystems and agriculture, but their numbers have significantly declined. Declines in pollinator populations are thought to be due to multiple factors including habitat loss, climate change, increased vulnerability to disease and parasites, and pesticide use. Neonicotinoid pesticides are agonists of insect nicotinic cholinergic receptors, and sub-lethal exposures are linked to reduced honey bee hive survival. Honey bees are highly dependent on circadian clocks to regulate critical behaviors, such as foraging orientation and navigation, time-memory for food sources, sleep, and learning/ memory processes. Because circadian clock neurons in insects receive light input through cholinergic signaling we tested for effects of neonicotinoids on honey bee circadian rhythms and sleep. Neonicotinoid ingestion by feeding over several days results in neonicotinoid accumulation in the bee brain, disrupts circadian rhythmicity in many individual bees, shifts the timing of behavioral circadian rhythms in bees that remain rhythmic, and impairs sleep. Neonicotinoids and light input act synergistically to disrupt bee circadian behavior, and neonicotinoids directly stimulate wake-promoting clock neurons in the fruit fly brain. Neonicotinoids disrupt honey bee circadian rhythms and sleep, likely by aberrant stimulation of clock neurons, to potentially impair honey bee navigation, time-memory, and social communication.


2020 ◽  
Vol 35 (3) ◽  
pp. 246-256
Author(s):  
Oliver Siehler ◽  
Guy Bloch

Internal circadian clocks organize animal behavior and physiology and are entrained by ecologically relevant external time-givers such as light and temperature cycles. In the highly social honey bee, social time-givers are potent and can override photic entrainment, but the cues mediating social entrainment are unknown. Here, we tested whether substrate-borne vibrations and hive volatiles can mediate social synchronization in honey bees. We first placed newly emerged worker bees on the same or on a different substrate on which we placed cages with foragers entrained to ambient day-night cycles, while minimizing the spread of volatiles between cages. In the second experiment, we exposed young bees to constant airflow drawn from either a free-foraging colony or a similar-size control hive containing only heated empty honeycombs, while minimizing transfer of substrate-borne vibrations between cages. After 6 days, we isolated each focal bee in an individual cage in an environmental chamber and monitored her locomotor activity. We repeated each experiment 5 times, each trial with bees from a different source colony, monitoring a total of more than 1000 bees representing diverse genotypes. We found that bees placed on the same substrate as foragers showed a stronger phase coherence and a phase more similar to that of foragers compared with bees placed on a different substrate. In the second experiment, bees exposed to air drawn from a colony showed a stronger phase coherence and a phase more similar to that of foragers compared with bees exposed to air from an empty hive. These findings lend credence to the hypothesis that surrogates of activity entrain circadian rhythms and suggest that multiple social cues can act in concert to entrain social insect colonies to a common phase.


Sign in / Sign up

Export Citation Format

Share Document