Circadian Rhythm in Feeding Behavior of Daphnia dentifera

2021 ◽  
pp. 074873042110544
Author(s):  
Alaina C. Pfenning-Butterworth ◽  
Kristina Amato ◽  
Clayton E. Cressler

Circadian rhythms enable organisms to mediate their molecular and physiological processes with changes in their environment. Although feeding behavior directly affects within-organism processes, there are few examples of a circadian rhythm in this key behavior. Here, we show that Daphnia have a nocturnal circadian rhythm in feeding behavior that corresponds with their diel vertical migration (DVM), an important life history strategy for predator and UV avoidance. In addition, this feeding rhythm appears to be temperature compensated, which suggests that feeding behavior is robust to seasonal changes in water temperature. A circadian rhythm in feeding behavior can impact energetically demanding processes like metabolism and immunity, which may have drastic effects on susceptibility to disease, starvation risk, and ultimately, fitness.

2021 ◽  
Vol 15 (1) ◽  
pp. 10-26 ◽  
Author(s):  
Aurelio José Figueredo ◽  
Steven C. Hertler ◽  
Mateo Peñaherrera-Aguirre

2019 ◽  
Author(s):  
Gretchen F. Wagner ◽  
Emeline Mourocq ◽  
Michael Griesser

Biparental care systems are a valuable model to examine conflict, cooperation, and coordination between unrelated individuals, as the product of the interactions between the parents influences the fitness of both individuals. A common experimental technique for testing coordinated responses to changes in the costs of parental care is to temporarily handicap one parent, inducing a higher cost of providing care. However, dissimilarity in experimental designs of these studies has hindered interspecific comparisons of the patterns of cost distribution between parents and offspring. Here we apply a comparative experimental approach by handicapping a parent at nests of five bird species using the same experimental treatment. In some species, a decrease in care by a handicapped parent was compensated by its partner, while in others the increased costs of care were shunted to the offspring. Parental responses to an increased cost of care primarily depended on the total duration of care that offspring require. However, life history pace (i.e., adult survival and fecundity) did not influence parental decisions when faced with a higher cost of caring. Our study highlights that a greater attention to intergenerational trade-offs is warranted, particularly in species with a large burden of parental care. Moreover, we demonstrate that parental care decisions may be weighed more against physiological workload constraints than against future prospects of reproduction, supporting evidence that avian species may devote comparable amounts of energy into survival, regardless of life history strategy.


1982 ◽  
Vol 47 (5) ◽  
pp. 885-908 ◽  
Author(s):  
R. Gillette ◽  
M. P. Kovac ◽  
W. J. Davis

1. A population of interneurons that control feeding behavior in the mollusk Pleurobranchaea has been analyzed by dye injection and intracellular stimulation/recording in whole animals and reduced preparations. The population consists of 12-16 somata distributed in two bilaterally symmetrical groups on the anterior edge of the cerebropleural ganglion (brain). On the basis of their position adjacent to the cerebral lobes, these cells have been named paracerebral neurons (PCNs). This study concerns pme subset pf [MCs. the large, phasic ones, which have the strongest effect on the feeding rhythm (21). 2. Each PCN sends a descending axon via the ipsilateral cerebrobuccal connective to the buccal ganglion. Axon branches have not been detected in other brain or buccal nerves and hence the PCNs appear to be interneurons. 3. In whole-animal preparations, tonic intracellular depolarization of the PNCs causes them to discharge cyclic bursts of action potentials interrupted by a characteristic hyperpolarization. In all specimens that exhibit feeding behavior, the interburst hyperpolarization is invariably accompanied by radula closure and the beginning of proboscis retraction (the "bite"). No other behavorial effect of PCN stimulation has been observed. 4. In whole-animal preparations, the PCNs are excited by food and tactile stimulation of the oral veil, rhinophores, and tentacles. When such stimuli induce feeding the PCNs discharge in the same bursting pattern seen during tonic PCN depolarization, with the cyclic interburst hyperpolarization phase locked to the bit. When specimens egest an unpalatable object by cyclic buccal movements, however, the PCNs are silent. The PCNs therefore exhibit properties expected of behaviorally specific "command" neurons for feeding. 5. Silencing one or two PCNs by hyperpolarization may weaken but does not prevent feeding induced by natural food stimuli. Single PCNs therefore can be sufficient but are not necessary to induction of feeding behavior. Instead the PCNs presumably operate as a population to control feeding. 6. In isolated nervous system preparations tonic extracellular stimulation of the stomatogastric nerve of the buccal ganglion elicits a cyclic motor rhythm that is similar in general features to the PNC-induced motor rhythm. Bursts of PCN action potentials intercalated at the normal phase position in this cycle intensify the buccal rhythm. Bursts of PCN impulses intercalated at abnormal phase positions reset the buccal rhythm. The PCNs, therefore, also exhibit properties expected of pattern-generator elements and/or coordinating neurons for the buccal rhythm. 7. The PCNs are recruited into activity when the buccal motor rhythm is elicited by stomatogastric nerve stimulation or stimulation of the reidentifiable ventral white cell. The functional synergy between the PCNs and the buccal rhythm is therefore reciprocal. 8...


2017 ◽  
Vol 4 (9) ◽  
pp. 170862 ◽  
Author(s):  
H. Ritchie ◽  
A. J. Jamieson ◽  
S. B. Piertney

Genome size varies considerably across taxa, and extensive research effort has gone into understanding whether variation can be explained by differences in key ecological and life-history traits among species. The extreme environmental conditions that characterize the deep sea have been hypothesized to promote large genome sizes in eukaryotes. Here we test this supposition by examining genome sizes among 13 species of deep-sea amphipods from the Mariana, Kermadec and New Hebrides trenches. Genome sizes were estimated using flow cytometry and found to vary nine-fold, ranging from 4.06 pg (4.04 Gb) in Paralicella caperesca to 34.79 pg (34.02 Gb) in Alicella gigantea . Phylogenetic independent contrast analysis identified a relationship between genome size and maximum body size, though this was largely driven by those species that display size gigantism. There was a distinct shift in the genome size trait diversification rate in the supergiant amphipod A. gigantea relative to the rest of the group. The variation in genome size observed is striking and argues against genome size being driven by a common evolutionary history, ecological niche and life-history strategy in deep-sea amphipods.


Sign in / Sign up

Export Citation Format

Share Document