Analysis of sequential dual immobilization of type I collagen and BMP-2 short peptides on hydrolyzed poly(buthylene succinate)/β-tricalcium phosphate composites for bone tissue engineering

2019 ◽  
Vol 34 (3) ◽  
pp. 351-364 ◽  
Author(s):  
Weerachai Singhatanadgit ◽  
Piyarat Sungkhaphan ◽  
Tharinee Theerathanagorn ◽  
Somying Patntirapong ◽  
Wanida Janvikul
2019 ◽  
Vol 43 (4) ◽  
pp. 2002-2010 ◽  
Author(s):  
Bo Zheng ◽  
Caiyun Mao ◽  
Tianyi Gu ◽  
Haihua Pan ◽  
Changyu Shao ◽  
...  

This novel biomimetic mineralization technique provides an efficient method to produce an advanced mineralized matrix.


Materials ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 3719 ◽  
Author(s):  
Giorgia Montalbano ◽  
Giorgia Borciani ◽  
Carlotta Pontremoli ◽  
Gabriela Ciapetti ◽  
Monica Mattioli-Belmonte ◽  
...  

In the last years bone tissue engineering has been increasingly indicated as a valid solution to meet the challenging requirements for a healthy bone regeneration in case of bone loss or fracture. In such a context, bioactive glasses have already proved their great potential in promoting the regeneration of new bone tissue due to their high bioactivity. In addition, their composition and structure enable us to incorporate and subsequently release therapeutic ions such as strontium, enhancing the osteogenic properties of the material. The incorporation of these inorganic systems in polymeric matrices enables the formulation of composite systems suitable for the design of bone scaffolds or delivery platforms. Among the natural polymers, type I collagen represents the main organic phase of bone and thus is a good candidate to develop biomimetic bioactive systems for bone tissue regeneration. However, alongside the specific composition and structure, the key factor in the design of new biosystems is creating a suitable interaction with cells and the host tissue. In this scenario, the presented study aimed at combining nano-sized mesoporous bioactive glasses produced by means of a sol–gel route with type I collagen in order to develop a bioactive hybrid formulation suitable for bone tissue engineering applications. The designed system has been fully characterized in terms of physico-chemical and morphological analyses and the ability to release Sr2+ ions has been studied observing a more sustained profile in presence of the collagenous matrix. With the aim to improve the mechanical and thermal stability of the resulting hybrid system, a chemical crosslinking approach using 4-star poly (ethylene glycol) ether tetrasuccinimidyl glutarate (4-StarPEG) has been explored. The biocompatibility of both non-crosslinked and 4-StarPEG crosslinked systems was evaluated by in vitro tests with human osteoblast-like MG-63 cells. Collected results confirmed the high biocompatibility of composites, showing a good viability and adhesion of cells when cultured onto the biomaterial samples.


2004 ◽  
Vol 823 ◽  
Author(s):  
Victor J. Chen ◽  
Laura A. Smith ◽  
Peter X. Ma

AbstractReverse solid freeform (SFF) fabrication was used to create highly-controlled macroporous structures in nano-fibrous poly (L-lactic acid) (PLLA) scaffolds. By using a computer-aided design (CAD) program to create a negative template for the scaffold, the three-dimensional (3-D) mold was created on a 3-D printer using a wax. After the template was printed, a solution of PLLA in tetrahydrofuran (THF) was cast into the mold, and was subsequently phase separated at -70°C which gives the nano-fibrous morphology. This resulted in a 3-D nano-fibrous scaffold with a uniform fiber mesh throughout the entire matrix, and greatly increased the surface area within the scaffold. Fiber diameters in these scaffolds were 50-500 nm, similar to type I collagen, and the densities of the fiber meshes can be altered by changing the polymer concentration. To examine the scaffold's potential for tissue regeneration, MC3T3-E1 osteoblasts were seeded and cultured on the scaffolds. Results show that the osteoblasts attached and proliferated on the scaffolds. After 6 weeks in culture, bone-like tissue was evident within the nano-fibrous scaffolds. By having the ability to control the macroporous architecture, interconnectivity, orientation, and external shape of the scaffold, as well as the nanometer-scaled fibrous features in the pore walls, this SFF fabrication/phase separation technique has great potential to design and create ideal scaffolds for bone tissue engineering.


2007 ◽  
Vol 330-332 ◽  
pp. 939-942 ◽  
Author(s):  
Xiao Feng Chen ◽  
Ying Jun Wang ◽  
Na Ru Zhao ◽  
Chun Rong Yang

The new type of bone tissue engineering scaffold composed of the sol-gel derived bioactive glass particles, type I collagen, hyaluronic acid and phosphatidylserine were prepared through cross-linking and freeze-drying techniques. SEM observation indicated that the scaffold possessed a 3-D interconnected porous structure and a high porosity. The properties of bio-mineralization and cells biocompatibility were investigated using SBF immersion and cells culture methods combined with SEM, XRD and FTIR techniques. The study revealed that this biomimetic scaffold possessed satisfactory functions of cells attachment, bio-mineralization, and cells biocompatibility. The porous structure and the surface of the scaffold which was covered by a bone-like HA crystal layer due to bio-mineralization were profitable for cells attachment and spread.


2007 ◽  
Vol 336-338 ◽  
pp. 1574-1576
Author(s):  
Xiao Feng Chen ◽  
Ying Jun Wang ◽  
Chun Rong Yang ◽  
Na Ru Zhao

The bone tissue engineering scaffold was developed by compounded the type I collagen with the porous scaffold of the sol-gel derived bioactive glass (BG) in the system CaO-P2O5-SiO2. The resultant porous scaffold was treated in supersaturated calcification solution (SCS) to form the surface layer of hydroxyl-carbonate-apatite (HCA) since the type I collagen possessed good biocompatibility and bio-absorbability, and also, the ability of inducting calcium phosphates to precipitated inside and outside the collagen fibers where the collagen fibers acted as bio-macromolecules template for formation of bone-like inorganic minerals in nature bone such as: octo-calcium phosphate (OCP), tri-calcium phosphate (TCP) and hydroxyl-carbonate-apatite (HCA). On the other hand, the sol-gel derived bioactive glass also played an important role in formation of the above bio-minerals owing to its serial chemical reactions with the body fluid. The in vitro study in supersaturated calcification solution SCS indicated that the surface of the porous scaffold was able to induce formation of bone-like HCA crystals on the pore walls of the scaffold which possessed satisfactory cells biocompatibility.


2013 ◽  
Vol 643 ◽  
pp. 25-28
Author(s):  
Kai Liu

It is Important content that to make Surface modification and surface modification and Improve the material on the surface of the cell adhesion and promotes cell proliferation to bone tissue engineering scaffolds. The role of osteoblast and support material dependent on the Material surface characteristics, Local shape, surface energy and chemical energy, which Determine how cells adsorbed onto the surface of the material and Localization of cells and cell function behavior. Therefore, the complexity of biomaterials and cell biological material surface interaction determines the biological scaffold materials for surface modification of importance. Ideal surface modification should take into consideration the surface topology, specific identification, hydrophilic and hydrophobic protein adsorption equilibrium, and other aspects of functional new tissues. At present, the most applications in surface modification of materials is type I collagen, future research will be a variety of surface modification of materials for composite materials, which will play complementary roles, as well as gene therapy and the development of nanometer materials, it will become a hot issue in the field of bone tissue engineering.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Yong-Seok Jang ◽  
Phonelavanh Manivong ◽  
Yu-Kyoung Kim ◽  
Kyung-Seon Kim ◽  
Sook-Jeong Lee ◽  
...  

Beta-tricalcium phosphate bioceramics are widely used as bone replacement scaffolds in bone tissue engineering. The purpose of this study is to develop beta-tricalcium phosphate scaffold with the optimum mechanical properties and porosity and to identify the effect of N-acetyl-L-cysteine loaded to beta-tricalcium phosphate scaffold on the enhancement of biocompatibility. The various interconnected porous scaffolds were fabricated using slurries containing various concentrations of beta-tricalcium phosphate and different coating times by replica method using polyurethane foam as a passing material. It was confirmed that the scaffold of 40 w/v% beta-tricalcium phosphate with three coating times had optimum microstructure and mechanical properties for bone tissue engineering application. The various concentration of N-acetyl-L-cysteine was loaded on 40 w/v% beta-tricalcium phosphate scaffold. Scaffold group loaded 5 mM N-acetyl-L-cysteine showed the best viability of MC3T3-E1 preosteoblastic cells in the water-soluble tetrazolium salt assay test.


Sign in / Sign up

Export Citation Format

Share Document