A new conjugate heat transfer method to analyse a 3D steam cooled gas turbine blade with temperature-dependent material properties

Author(s):  
M M Jafari ◽  
G Atefi ◽  
J Khalesi ◽  
A Soleymani

The erosion of the hot regions in a gas turbine is one of the most important challenges encountered by the power plants. Though several numerical simulations of the problem have been reported so far, little is known to give accurate results. In this article, the thermoelastic behaviour of a gas turbine blade with internal steam-cooled channels positioned within a three-dimensional cascade configuration has been studied. A computer code based on the conjugate heat transfer method using the simultaneous solution of Navier–Stokes and heat transfer equations has been developed. From this study, the temperature distribution along with the stress values at high temperatures has been obtained. The blade parameters such as E, α, and K were considered to be a function of the temperature. In the previous works, usually only one or two of these parameters was considered as temperature dependent and the others constant. In this article, all the blade parameters, though making the equations highly non-linear, were considered as a function of temperature. The results have been compared with the available experimental data and a good agreement is observed. According to these findings, taking the temperature dependency of materials into account increases the estimations accuracy and brings the results closer to the reality.

Author(s):  
B. Woerz ◽  
Y. Mick ◽  
E. Findeisen ◽  
P. Jeschke ◽  
M. Rabs

This paper presents different numerical methods to predict the thermal load of a convection cooled gas turbine blade under realistic operating temperature conditions. The subject of the investigation is a gas turbine rotor blade which is equipped with a state-of-the-art convection cooling system. Firstly, two FEM based methods are introduced. One method, referred to as FEM1D method, uses empirical correlations from the open literature to obtain one dimensional heat transfer coefficients along one flow line inside the cooling channels while in the hot gas path a three dimensional CFD simulation is used. The second method (FEM2D) uses three dimensional CFD simulations to obtain two dimensional heat transfer coefficient distributions for both, the inner cooling channels and the hot gas path. The results from both numerical methods are compared with each other and are validated with experimental data, quantifying also their accuracy limits. In total this paper gives an evaluation of two different FEM methods to predict temperature distribution in convection cooled gas turbines. Their accuracy, numerical cost and limitations are evaluated. It turns out that the temperature profiles gained by both methods are generally in good agreement with the experiments. However, while causing higher numerical costs the more detailed FEM2D method achieves more accurate results.


Author(s):  
E. Findeisen ◽  
B. Woerz ◽  
M. Wieler ◽  
P. Jeschke ◽  
M. Rabs

This paper presents two different numerical methods to predict the thermal load of a convection-cooled gas-turbine blade under realistic operating temperature conditions. The subject of the investigation is a gas-turbine rotor blade equipped with an academic convection-cooling system and investigated at a cascade test-rig. It consists of three cooling channels, which are connected outside the blade, so allowing cooling air temperature measurements. Both methods use FE models to obtain the temperature distribution of the solid blade. The difference between these methods lies in the generation of the heat transfer coefficients along the cooling channel walls which serve as a boundary condition for the FE model. One method, referred to as the FEM1D method, uses empirical one-dimensional correlations known from the available literature. The other method, the FEM2D method, uses three-dimensional CFD simulations to obtain two-dimensional heat transfer coefficient distributions. The numerical results are compared to each other as well as to experimental data, so that the benefits and limitations of each method can be shown and validated. Overall, this paper provides an evaluation of the different methods which are used to predict temperature distributions in convection-cooled gas-turbines with regard to accuracy, numerical cost and the limitations of each method. The temperature profiles obtained in all methods generally show good agreement with the experiments. However, the more detailed methods produce more accurate results by causing higher numerical costs.


Sign in / Sign up

Export Citation Format

Share Document