A new closed-form solution to inverse static force analysis of a spatial three-spring system

Author(s):  
Ying Zhang ◽  
Qizheng Liao ◽  
Hai-Jun Su ◽  
Shimin Wei

In this paper, a new closed-form solution to the inverse static force analysis of a spatial three-spring system is presented. The system is formed by three springs each of which connects the ground at one end and joins a common point at the other. When a known force is applied to the common point of the system, the goal of inverse static analysis is to determine all the equilibrium configurations. A system of three polynomial equations in three variables is derived based on the geometric constraint and static force balancing. A 20 by 20 Dixon resultant matrices firstly derived from these three polynomials and then reduced to an 18 by 18 matrix. A 46th-degree univariate polynomial equation is yielded from the above 18 by 18 matrix. By further analysis, we found that 24 roots were degenerated and only the remaining 22 roots are the ones for the three-spring system. The result agrees with previous results. At last, two numerical examples are given to verify the elimination procedure. The presented algebraic elimination solution reveals some intrinsic geometry nature of this challenging problem.

1995 ◽  
Vol 117 (2A) ◽  
pp. 286-291 ◽  
Author(s):  
P. Dietmaier

A tetrahedral three-spring system under a single load has been analyzed and a closed-form solution for the equilibrium positions is given. Each of the three springs is attached at one end to a fixed pivot in space while the other three ends are linked by a common pivot. The springs are assumed to behave in a linearly elastic way. The aim of the paper at hand was to find out what the maximum number of equilibrium positions of such a system might be, and how to compute all possible equilibrium configurations if a given force is applied to the common pivot. First a symmetric and unloaded system was studied. For such a system it was shown that there may exist a maximum of 22 equilibrium configurations which may all be real. Second the general, loaded system was analyzed, revealing again a maximum of 22 real equilibrium configurations. Finally, the stability of this three-spring system was investigated. A numerical example illustrates the theoretical findings.


Author(s):  
Ying Zhang ◽  
Qizheng Liao ◽  
Shimin Wei ◽  
Feng Wei ◽  
Duanling Li

In this paper, we present a new algebraic elimination algorithm for the inverse static force analysis of a special planar three-spring system. The system consists of three linear springs joined to the ground at the two fixed pivots and connected to the two moving pivots at the platform. When exerted by specified static force, the goal of inverse static analysis is to determine all the equilibrium configurations. First of all, a system of seven polynomial equations in seven variables is established based on the geometric constraint and static force balancing. Then, four basic constraint equations in four variables are obtained by variable substitution. Next, a 20 by 20 resultant matrix is reduced by means of three consecutive Sylvester elimination process. Finally, a 54th-degree univariate polynomial equation is directly derived without extraneous roots in the computer algebra system Mathematica 9.0. At last, a numerical example is given to verify the elimination procedure.


2011 ◽  
Vol 145 ◽  
pp. 6-10
Author(s):  
Yang Guo

This paper presents a closed-form solution to determination of the position and orientation of a perspective camera with two unknown effective focal lengths for the noncoplanar perspective four point (P4P) problem. Given four noncoplanar 3D points and their correspondences in image coordinate, we convert perspective transformation to affine transformation, and formulate the problem using invariance to 3D affine transformation and arrive to a closed-form solution. We show how the noncoplanar P4P problem is cast into the problem of solving an eighth degree polynomial equation in one unknown. This result shows the noncoplanar P4P problem with two unknown effective focal lengths has at most 8 solutions. Last, we confirm the conclusion by an example. Although developed as part of landmark-guided navigation, the solution might well be used for landmark-based tracking problem, hand-eye coordination, and for fast determination of interior and exterior camera parameters. Because our method is based on closed-form solution, its speed makes it a potential candidate for solving above problems.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6480
Author(s):  
Kai Guo ◽  
Hu Ye ◽  
Zinian Zhao ◽  
Junhao Gu

In this paper we propose an efficient closed form solution to the absolute orientation problem for cameras with an unknown focal length, from two 2D–3D point correspondences and the camera position. The problem can be decomposed into two simple sub-problems and can be solved with angle constraints. A polynomial equation of one variable is solved to determine the focal length, and then a geometric approach is used to determine the absolute orientation. The geometric derivations are easy to understand and significantly improve performance. Rewriting the camera model with the known camera position leads to a simpler and more efficient closed form solution, and this gives a single solution, without the multi-solution phenomena of perspective-three-point (P3P) solvers. Experimental results demonstrated that our proposed method has a better performance in terms of numerical stability, noise sensitivity, and computational speed, with synthetic data and real images.


2013 ◽  
Vol 40 (2) ◽  
pp. 106-114
Author(s):  
J. Venetis ◽  
Aimilios (Preferred name Emilios) Sideridis

2021 ◽  
Vol 10 (7) ◽  
pp. 435
Author(s):  
Yongbo Wang ◽  
Nanshan Zheng ◽  
Zhengfu Bian

Since pairwise registration is a necessary step for the seamless fusion of point clouds from neighboring stations, a closed-form solution to planar feature-based registration of LiDAR (Light Detection and Ranging) point clouds is proposed in this paper. Based on the Plücker coordinate-based representation of linear features in three-dimensional space, a quad tuple-based representation of planar features is introduced, which makes it possible to directly determine the difference between any two planar features. Dual quaternions are employed to represent spatial transformation and operations between dual quaternions and the quad tuple-based representation of planar features are given, with which an error norm is constructed. Based on L2-norm-minimization, detailed derivations of the proposed solution are explained step by step. Two experiments were designed in which simulated data and real data were both used to verify the correctness and the feasibility of the proposed solution. With the simulated data, the calculated registration results were consistent with the pre-established parameters, which verifies the correctness of the presented solution. With the real data, the calculated registration results were consistent with the results calculated by iterative methods. Conclusions can be drawn from the two experiments: (1) The proposed solution does not require any initial estimates of the unknown parameters in advance, which assures the stability and robustness of the solution; (2) Using dual quaternions to represent spatial transformation greatly reduces the additional constraints in the estimation process.


Sign in / Sign up

Export Citation Format

Share Document