Mechanical properties of a hierarchical honeycomb with sandwich walls

Author(s):  
Ting Yi

The in-plane compressive collapse and fracture toughness of a hierarchical hexagonal honeycomb with sandwich walls consisting of corrugated cores are studied by using finite element method. Its near-optimal configuration is identified by maximizing its elastic limit, which is determined by three competing failure modes including plastic yielding of the larger struts, or elastic wrinkling of the face sheets of the larger struts, or elastic buckling of the smaller struts. The overall mechanical properties of the optimal hierarchical honeycomb, including the Young’s modulus, elastic limit, peak strength, and fracture toughness are obtained from finite element method simulation and compared with analytical predictions, and the discrepancy between the two is explained. The optimal hierarchical honeycomb is found to be superior to its equivalent mass first-order honeycomb in all the mechanical properties listed above when the relative density is low (about 10%). Moreover, the Young’s modulus, elastic limit and peak strength under plastic failure mode, and the fracture toughness of this optimal hierarchical honeycomb are shown to depend linearly upon its relative density. This paper provides additional insights into hierarchical cellular materials.

2019 ◽  
Vol 8 (3) ◽  
pp. 7194-7199

Bearings are critical components for the transmission of motion in machines. Automotive components, especially bearings, will wear out over a certain period of time because they are constantly subjected to high levels of stress and friction. Studies have proven that coatings can extend the lifespan of bearings. Hence, it is necessary to conduct studies on coatings for bearings, particularly the mechanical and wear properties of the coating material. This detailed study focused on the mechanical properties of single-coatings of TiN and TiAIN using the finite element method (FEM). The mechanical properties that can be obtained from nano-indentation experiments are confined to just the Young’s modulus and hardness. Therefore, nanoindentation simulations were conducted together with the finite element method to obtain more comprehensive mechanical properties such as the yield strength and Poisson’s ratio. In addition, various coating materials could be examined by means of these nanoindentation simulations, as well the effects of those parameters that could not be controlled experimentally, such as the geometry of the indenter and the bonding between the coating and the substrate. The simulations were carried out using the ANSYS Mechanical APDL software. The mechanical properties such as the Young’s modulus, yield strength, Poisson’s ratio and tangent modulus were 370 GPa, 19 GPa, 0.21 and 10 GPa, respectively for the TiAlN coating and 460 GPa, 14 GPa, 0.25 and 8 GPa, respectively for the TiN coating. The difference between the mechanical properties obtained from the simulations and experiments was less than 5 %.


2006 ◽  
Vol 39 ◽  
pp. S19
Author(s):  
M.R. Bosisio ◽  
M. Talmant ◽  
W. Skalli ◽  
P. Laugier ◽  
D. Mitton

2013 ◽  
Vol 1580 ◽  
Author(s):  
Max Larner ◽  
Lilian P. Dávila

ABSTRACTLightweight porous metallic materials are generally created through specialized processing techniques. Their unique structure gives these materials interesting properties which allow them to be used in diverse structural and insulation applications. In particular, highly porous Al structures (Al foams) have been used in aircraft components and sound insulation; however due to the difficulty in processing and random nature of the foams, they are not well understood and thus they have not yet been utilized to their full potential. The objective of this project was to determine whether a relationship exists between the relative density (porous density/bulk density) and the mechanical properties of porous Al structures. For this purpose, a combination of computer simulations and experiments was pursued to better understand possible relationships. A Finite Element Method (FEM)-based software, COMSOL Multiphysics 4.3, was used to model the structure and to simulate the mechanical behavior of porous Al structures under compressive loads ranging from 1-100 MPa. From these simulated structures, the maximum von Mises stress, volumetric strain, and other properties were calculated. These simulation results were compared against data from compression experiments performed using the Instron Universal Testing Machine (IUTM) on porous Al specimens created via a computernumerically-controlled (CNC) mill. CES EduPack software, a materials design program, was also used to estimate the mechanical properties of porous Al and open cell foams for values not available experimentally, and for comparison purposes. This program allowed for accurate prediction of the mechanical properties for a given percent density foam, and also provided a baseline for the solid Al samples tested. The main results from experiments were that the Young’s moduli (E) for porous Al samples (55.8% relative density) were 15.9-16.6 GPa depending on pore diameter, which is in good agreement with the CES EduPack predictions; while the compressive strengths (σc) were 155-185 MPa, higher than those predicted by CES EduPack. The results from the FEM simulations using 3D models (55.8% relative density) revealed the onset of yielding at 13.5-14.0 MPa, which correlates well with CES EduPack data. Overall results indicated that a combination of experiments and FEM simulations can be used to calculate structure-property relationships and to predict yielding and failure, which may help in the pursuit of simulation-based design of metallic foams. In the future, more robust modeling and simulation techniques will be explored, as well as investigating closed cell Al foams and different porous geometries (nm to micron). This study can help to improve the current methods of characterizing porous materials and enhance knowledge about their properties for alternative energy applications, while promoting their design through integrated approaches.


2019 ◽  
Vol 17 (08) ◽  
pp. 1950054
Author(s):  
Tittu Varghese Mathew ◽  
Lars Beex ◽  
Stéphane PA Bordas ◽  
Sundararajan Natarajan

In this paper, the cell-based smoothed finite element method is extended to solve stochastic partial differential equations with uncertain input parameters. The spatial field of Young’s Modulus and the corresponding stochastic results are represented by Karhunen-Loéve expansion and polynomial chaos expansion, respectively. Young’s Modulus of structure is considered to be random for stochastic static as well as free vibration problems. Mathematical expressions and the solution procedure are articulated in detail to evaluate the statistical characteristics of responses in terms of the static displacements and the free vibration frequencies. The feasibility and the effectiveness of the proposed SGCS–FEM method in terms of accuracy and lower demand on the mesh size in the solution domain over that of conventional FEM for stochastic problems are demonstrated by carefully chosen numerical examples. From the numerical study, it is inferred that the proposed framework yields accurate results.


2014 ◽  
Vol 633-634 ◽  
pp. 44-51
Author(s):  
Fue Han ◽  
Chang Qing Chen ◽  
Ya Peng Shen

Mechanical properties of the nanoporous film with the relative density of can be determined using the nanoindentation. Using the 3D finite element method, the force-penetration curves are discussed. The elastic and plastic properties of the nanoporous membranes are derived from the loading-unloading curves.


Author(s):  
Aldemon Lage Bonifácio ◽  
Julia Castro Mendes ◽  
Michèle Cristina Resende Farage ◽  
Flávio de Souza Barbosa ◽  
Anne-Lise Beaucour

Abstract The compressive strength (fc) and Young’s modulus (Ec) of concretes are properties of great importance in civil engineering problems. To this day, despite the relevance of the subject, concretes are still designed based on charts and empirical formulae. This scenario is even more imprecise for lightweight aggregate concretes (LWAC), which contain less design methodologies and case studies available in the literature. In this sense, the present work presents a numerical simulation for predicting the properties of LWAC’s specimens using the Finite Element Method. The material was considered as biphasic, comprising lightweight aggregates and the enveloping mortar. Each phase was modelled with its own compressive strength, tensile strength and Young’s modulus. The achieved numerical results for fc and Ec were compared with their experimental counterparts, obtained from the literature. In total, 48 concrete formulations were assessed. Numerical results showed fair agreement with the experimental data. In general, the Mean Absolute Percentage Error (MAPE) was lower for the shale aggregates for both Young's modulus (1.75% versus 4.21% of expanded clay) and compressive strength (4.19% versus 9.89% of expanded clay). No clear trend of error was identified in relation to the aggregate proportion or to the mortar types, in which the MAPE varied from 2.36% to 8.13%. In conclusion, the simplification to spherical aggregates has shown satisfactory results, as has the adoption of a 2D model, which require less computational resources. Results encourage further applications with more complex geometrical aspects to improve the mix design and safety of LWAC.


2020 ◽  
Vol 8 (5) ◽  
pp. 2900-2904

Finte Element Analysis (FEA) of implants and fixators were carried out in this paper. Various implants and fixators were carried these fixators were used for various fractures occurring in the human bone. The implants and fixators were modeled and analysed using FEA software called ANYSWorkBench. These results were analysed, it is found titanium implants are more suitable for implants and fixators due to its rigidity and strength and young’s modulus very near tom the young’s modulus of the bone.


Sign in / Sign up

Export Citation Format

Share Document