Dynamic response analysis of offshore wind turbine installation suspended by a floating crane

Author(s):  
Zhu Ming ◽  
Zhang Peng ◽  
Zhu Changming

In this paper, a dynamic model for the offshore wind turbine installation is proposed. And this model is coupled by the wind turbine and the floating crane considering 6-DOF floating crane, 5-DOF wind turbine and elastic stretch of the hoisting cable. And when the wind turbine lands on the supporting structure, the displacement constraint is applied at the wind turbine. During the process, the relaxation of the hoisting cable is considered. In addition, the nonlinear hydrostatic force, environmental force, hoisting cable force and mooring force are considered as the external force. The motions of wind turbine and the floating crane are studied. From the numerical analysis, it is found that the release velocity, the release height and wave condition have a great effect on the motion of wind turbine.

2021 ◽  
Author(s):  
Jiafeng Xu ◽  
Behfar Ataei ◽  
Karl Henning Halse ◽  
Hans Petter Hildre ◽  
Egil Tennfjord Mikalsen

Author(s):  
Tomoaki Utsunomiya ◽  
Iku Sato ◽  
Koji Tanaka

Abstract When using synthetic fiber rope as a mooring line of a floating body such as floating offshore wind turbine (FOWT), it is necessary to carry out characteristic test and to grasp well about strength, stiffness, durability against monotonic and cyclic loadings. In this research, we have made characteristics test of polyester rope based on ISO. Next, based on the obtained characteristic values (mass, stiffness, strength, etc.), the dynamic response analysis of the floating body-mooring system was carried out and the mooring design was carried out. It was actually operated as a floating body mooring line for about 1 year. During the operation period, no abnormality was found, nor appearance damage occurred. After completion of operation for 1 year, the polyester rope was collected and residual strength test was carried out. As a result, no serious deterioration situation such as infiltration of marine organisms or fracture of the strands due to wear between fibers was observed at all. On the other hand, with respect to durability, it was found that the strength reduction was 2.9% from the initial state with respect to the breaking strength.


2019 ◽  
Vol 188 ◽  
pp. 106238 ◽  
Author(s):  
Min-Yuan Cheng ◽  
Yung-Fu Wu ◽  
Yu-Wei Wu ◽  
Sainabou Ndure

Sign in / Sign up

Export Citation Format

Share Document