Design and modeling of a novel robotic arm with multiple-segment joints

Author(s):  
Hangfei Zhou ◽  
Zhuang Fu ◽  
Jian Fei ◽  
Zhen Yang

This paper presents a novel miniature robotic arm with four degrees of freedom and one end-effector. The two joints of the robotic arm are multiple-segment, which consist of several serial plates with tiny cavities. Kinematic modeling of the robotic arm has been completed for subsequent implementation. With multiple-segment joints, the robotic arm gets smooth, linear, and flexible property. Simulations and experiments show that the robot can be used in abdominal single-port minimally invasive surgery for its unique operation capability.

2012 ◽  
Vol 6 (2) ◽  
Author(s):  
Chin-Hsing Kuo ◽  
Jian S. Dai

A crucial design challenge in minimally invasive surgical (MIS) robots is the provision of a fully decoupled four degrees-of-freedom (4-DOF) remote center-of-motion (RCM) for surgical instruments. In this paper, we present a new parallel manipulator that can generate a 4-DOF RCM over its end-effector and these four DOFs are fully decoupled, i.e., each of them can be independently controlled by one corresponding actuated joint. First, we revisit the remote center-of-motion for MIS robots and introduce a projective displacement representation for coping with this special kinematics. Next, we present the proposed new parallel manipulator structure and study its geometry and motion decouplebility. Accordingly, we solve the inverse kinematics problem by taking the advantage of motion decouplebility. Then, via the screw system approach, we carry out the Jacobian analysis for the manipulator, by which the singular configurations are identified. Finally, we analyze the reachable and collision-free workspaces of the proposed manipulator and conclude the feasibility of this manipulator for the application in minimally invasive surgery.


Author(s):  
A. Mirbagheri ◽  
F. Farahmand ◽  
A. Meghdari ◽  
H. Sayyaadi ◽  
L. Savoj ◽  
...  

Laparoscopic surgery is a specific branch of minimally invasive surgery (MIS) that is performed on the abdomen and endoscopic tools are passed through the incision points and trocars on the abdominal wall, so they can reach the surgical site [1]. Robotic systems have been proved to be very useful as a cameraman in laparoscopic surgery; they are more stable with no fatigue and inattention and reduce the supernumerary staff required, provide excellent geometrical accuracy and improved personal control for the surgeon over the procedure, etc. The available robots for handling and control of laparoscopic lens include at least 4 actuators to fulfill the surgeon’s requirements [2]. The purpose of the present study was to develop a novel design for the laparoscope robotic arm in which while the systems move ability is maintained its active degrees of freedom are reduced.


Author(s):  
William M. Aguilera ◽  
Mary I. Frecker ◽  
Randy Haluck

Abstract A model has been developed to design a new active, steerable end-effector for minimally invasive surgery. Active material is incorporated into the surgical instrument to increase the degrees of freedom available to the surgeon. This paper focuses on the modeling of the end-effector using both piezoelectric ceramic and electroactive polymer (EAP) materials. The end-effector design consists of a number of bimorph actuator sections in series with each active layer being individually controlled. Each section may behave as either a bimorph or a unimorph actuator, where in the case of unimorph one of the active layers is passive. By varying the strength and direction of the electric field across each section, a prescribed overall shape can be achieved to allow the user to steer the device. The piezoceramic device is modeled using strain energy methods to predict the quasi-static force-deflection behavior. In the EAP model, experimental data for the electrostrictive P(VDF-TrFE) copolymer is used to model the non-linear relationship between the electric field and the induced strain. Due to the large deflections achievable with the EAP, a model for large deflections beams is also used. Modeling is carried out using MATLAB and then the behavior of piezoelectric ceramic is compared to that of electro-active polymer (EAP).


Author(s):  
J. E. N. Jaspers ◽  
M. Shehata ◽  
F. Wijkhuizen ◽  
J. L. Herder ◽  
C. A. Grimbergen

Performing complex tasks in Minimally Invasive Surgery (MIS) is demanding due to a disturbed hand-eye co-ordination, the use of non-ergonomic instruments with limited degrees of freedom (DOFs) and a lack of force feedback. Robotic telemanipulatory systems enhance surgical dexterity by providing up to 7 DOFs. They allow the surgeon to operate in an ergonomically favorable position with more intuitive manipulation of the instruments. Commercially available robotic systems, however, are very bulky, expensive and do not provide any force feedback. The aim of our study was to develop a simple mechanical manipulator for MIS. When manipulating the handle of the device, the surgeon’s wrist and grasping movements are directly transmitted to the deflectable instrument tip in 7 DOFs. The manipulator consists of a parallelogram mechanism with steel wires. First phantom experience indicated that the system functions properly. The MIM provides some force feedback improving safety. A set of MIMs seems to be an economical and compact alternative for robotic systems.


2015 ◽  
Vol 25 (6) ◽  
pp. 1121-1127 ◽  
Author(s):  
Lesley B. Conrad ◽  
Pedro T. Ramirez ◽  
William Burke ◽  
R. Wendel Naumann ◽  
Kari L. Ring ◽  
...  

ObjectivesTo evaluate the current patterns of use of minimally invasive surgical procedures, including traditional, robotic-assisted, and single-port laparoscopy, by Society of Gynecologic Oncology (SGO) members and to compare the results to those of our 2004 and 2007 surveys.MethodsThe Society of Gynecologic Oncology members were surveyed through an online or mailed-paper survey. Data were analyzed and compared with results of our prior surveys.ResultsFour hundred six (32%) of 1279 SGO members responded. Eighty-three percent of respondents (n = 337) performed traditional laparoscopic surgery (compared with 84% in 2004 and 91% in 2007). Ninety-seven percent of respondents performed robotic surgery (compared with 27% in 2007). When respondents were asked to indicate procedures that they performed with the robot but not with traditional laparoscopy, 75% indicated radical hysterectomy and pelvic lymphadenectomy for cervical cancer. Overall, 70% of respondents indicated that hysterectomy and staging for uterine cancer was the procedure they most commonly performed with a minimally invasive approach. Only 17% of respondents who performed minimally invasive surgery performed single-port laparoscopy, and only 5% of respondents indicated that single-port laparoscopy has an important or very important role in the field.ConclusionsSince our prior surveys, we found a significant increase in the overall use and indications for robotic surgery. Radical hysterectomy or trachelectomy and pelvic lymphadenectomy for cervical cancer and total hysterectomy and staging for endometrial cancer were procedures found to be significantly more appropriate for the robotic platform in comparison to traditional laparoscopy. The indications for laparoscopy have expanded beyond endometrial cancer staging to include surgical management of early-stage cervical and ovarian cancers, but the use of single-port laparoscopy remains limited.


2012 ◽  
Vol 499 ◽  
pp. 248-252
Author(s):  
Jun Sun ◽  
Bo Xiang ◽  
Ping Zhou ◽  
Rui Wang

The single-port gasless laparoscopic surgical instrument is an international leading patented product in minimally invasive surgery. This paper first describes the composition and the usage of the shadowless retractor of the single-port gasless laparoscopy minimally invasive surgical instrument. Aim to meet the specific requirement arise in the minimally invasive surgery for the animal abdominal cavity, we first improve the existing shadowless lifting retractor. Then, this paper proposes and designs the double-light shadowless lifting retractor. The test has shown the designed double-light shadowless lifting retractor has satisfied the design requirement. The practical tests have been done and shown the viability and effectiveness of the proposed design approach.


Sign in / Sign up

Export Citation Format

Share Document