Multibody modelling of the human body for vibration induced direct and cross-axis seat to head transmissibility

Author(s):  
Raj Desai ◽  
Anirban Guha ◽  
P Seshu

During vertical or fore-and-aft vibrations of a seated human body, the motion of the head is influenced by backrest forces transmitted to the lumbar region of the spine. Thus, it is essential to consider backrest support while developing a human body model to capture direct and cross-axis seat to head transmissibility. For this purpose, twelve degrees of freedom seated human body model of the appropriate level of complexity with inclined backrest support has been developed in this work. The interconnection of masses is modelled using rotational and translational springs-dampers and the contact with an inclined backrest gives a better simulation of forces transmitted to the lower torso in the x-z direction. The model parameters were identified and optimized using a multi-objective genetic algorithm by minimizing the least square difference between experimental head motion and analytical results. Subsequently, a sensitivity study was carried out to find the effect of model parameters on the peak transmissibility modulus and resonant frequency. This will help in refining the design of the seat and backrest for improving comfort. Modal analysis was carried out for an improved understanding of the relative motion of different sections. Power absorbed at different locations of the human body was studied to identify regions susceptible to long term damage. Internal forces in the neck region were also determined and these can be used to characterize the neck pain due to prolonged exposure to such vibrations. The research work reported in this work offers an in-depth understanding of biodynamic responses of backrest supported human body subjected to vertical/horizontal vibrations. We expect it to offer vehicle designers some insights to control human body parameters (acceleration/forces /moments/power absorbed/modal displacements/lower back pain) and design appropriate restraints-supports for improved comfort.

2016 ◽  
Vol 51 (s1) ◽  
pp. S41-S47 ◽  
Author(s):  
Ƚukasz Januszkiewicz ◽  
Paolo Di Barba ◽  
Sƚawomir Hausman

Author(s):  
Bu S. Park ◽  
Sunder S. Rajan ◽  
Leonardo M. Angelone

We present numerical simulation results showing that high dielectric materials (HDMs) when placed between the human body model and the body coil significantly alter the electromagnetic field inside the body. The numerical simulation results show that the electromagnetic field (E, B, and SAR) within a region of interest (ROI) is concentrated (increased). In addition, the average electromagnetic fields decreased significantly outside the region of interest. The calculation results using a human body model and HDM of Barium Strontium Titanate (BST) show that the mean local SAR was decreased by about 56% (i.e., 18.7 vs. 8.2 W/kg) within the body model.


2009 ◽  
Vol 23 (17) ◽  
pp. 3586-3590 ◽  
Author(s):  
NUTTACHAI JUTONG ◽  
APIRAT SIRITARATIWAT ◽  
DUANGPORN SOMPONGSE ◽  
PORNCHAI RAKPONGSIRI

Electrostatic discharge (ESD) effects on GMR recording heads have been reported as the major cause of head failure. Since the information density in hard-disk drives has dramatically increased, the GMR head will be no longer in use. The tunneling magnetoresistive (TMR) read heads are initially introduced for a 100 Gbit/in2 density or more. Though the failure mechanism of ESD in GMR recording heads has not been explicitly understood in detail, a study to protect from this effect has to be done. As the TMR head has been commercially started, the ESD effect must be considered. This is the first time that the TMR equivalent circuit has been reported in order to evaluate the ESD effect. A standard human body model (HBM) is discharged across R+ and R- where the capacitances of flex on suspension (FOS) are varied. It is intriguingly found that the electrical characteristics of the TMR head during the discharge period depend on the discharge position. This may be explained in terms of the asymmetry impedance of TMR by using adapted Thevenin's theory. The effect of FOS components on TMR recording heads is also discussed.


Sign in / Sign up

Export Citation Format

Share Document