Performance analysis of a semi-active suspension system using coupled CFD-FEA based non-parametric modeling of low capacity shear mode monotube MR damper

Author(s):  
Gurubasavaraju Tharehalli Mata ◽  
Hemantha Kumar ◽  
Arun Mahalingam

In this work, an approach for formulation of a non-parametric-based polynomial representative model of magnetorheological damper through coupled computational fluid dynamics and finite element analysis is presented. Using this, the performance of a quarter car suspension subjected to random road excitation is estimated. Initially, prepared MR fluid is characterized to obtain a relationship between the field-dependent shear stress and magnetic flux density. The amount of magnetic flux induced in the shear gap of magnetorheological damper is computed using finite element analysis. The computed magnetic field is used in the computational fluid dynamic analysis to calculate the maximum force induced under specified frequency, displacement and applied current using ANSYS CFX software. Experiments have been conducted to verify the credibility of the results obtained from computational analysis, and a comparative study has been made. From the comparison, it was found that a good agreement exists between experimental and computed results. Furthermore, the influence of fluid flow gap length and frequency on the induced force of the damper is investigated using the computational methods (finite element analysis and computational fluid dynamic) for various values. This proposed approach would serve in the preliminary design for estimation of magnetorheological damper dynamic performance in semi-active suspensions computationally prior to experimental analysis.

Author(s):  
Alec Pattinson ◽  
James Dodds ◽  
Peter Hugill ◽  
Gary Reed

This paper describes the results of a Finite Element Analysis (FEA) of a pipe junction consisting of a thermal sleeve subject to rapid temperature changes. The purpose of the analysis was to utilise derived Computational Fluid Dynamic (CFD) temperatures to calculate stresses on the pressure boundary and thermal sleeve of a pipe junction. Several transient events were modelled and analysed. Work was then carried out in accordance with the relevant articles of the ASME Boiler and Pressure Vessel Code, Section III, sub-section NB. Work included, design, hydrotest, Level A (including fatigue) and simplified elastic plastic assessments, however not presented within this paper. The likely fracture performance of the pressure boundary was also investigated, however are also not presented within this paper.


Machines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 81
Author(s):  
Betsy D. M. Chaparro-Rico ◽  
Fabio Sebastiano ◽  
Daniele Cafolla

Even though scientific studies of smart stents are extensive, current smart stents focus on pressure sensors. This paper presents a novel implantable biocompatible smart stent for monitoring eventual restenosis. The device is comprised of a metal mesh structure, a biocompatible and adaptable envelope, and pair-operated ultrasonic sensors for restenosis monitoring through flow velocity. Aside from continuous monitoring of restenosis post-implantation, it is also important to evaluate whether the stent design itself causes complications such as restenosis or thrombosis. Therefore, computational fluid dynamic (CFD) analysis before and after stent implantation were carried out as well as finite element analysis (FEA). The proposed smart stent was put in the descending thoracic section of a virtually reconstructed aorta that comes from a computed tomography (CT) scan. Blood flow velocity showed that after stent implantation, there is not liquid retention or vortex generation. In addition, blood pressures after stent implantation were within the normal blood pressure values. The stress and the factor of safety (FOS) analysis showed that the stress values reached by the stent are very far from the yield strength limit of the materials and that the stent is stiff enough to support the applied loads exported from the CFD results.


2011 ◽  
Vol 201-203 ◽  
pp. 830-835
Author(s):  
Chang Gao Xia ◽  
Jian Kuan Su ◽  
Mao Hui Pan

This paper presents an integrated method, which is based on the CAD/CAE, for engine crankshaft design. A parametric modeling system of engine crankshaft is established with the CATIA secondary development tools. Taking advantage of the finite element analysis procedure of engine crankshaft strength which is programmed with ANSYS APDL programming language, the parametric loading, automatic solution and result analysis of the crankshaft strength can be realized. Integrating the parametric modeling system of engine crankshaft and the special finite element analysis procedure of the engine crankshaft strength, the three-dimensional digital model of the crankshaft can be generated rapidly. By changing the structure dimension, the crankshaft series design is achieved and the design and analysis can be improved. Therefore, it is helpful to improve the design quality and efficiency of crankshaft and shorten the design cycle.


2015 ◽  
Vol 764-765 ◽  
pp. 289-293
Author(s):  
Yi Chang Wu ◽  
Han Ting Hsu

This paper presents the magnetostatic field analysis of a coaxial magnetic gear device proposed by Atallah and Howe. The structural configuration and speed reduction ratio of this magnetic gear device are introduced. The 2-dimensional finite-element analysis (2-D FEA), conducted by applying commercial FEA software Ansoft/Maxwell, is performed to evaluate the magnetostatic field distribution, especially for the magnetic flux densities within the outer air-gap. Once the number of steel pole-pieces equals the sum of the pole-pair numbers of the high-speed rotor and the low-speed rotor, the coaxial magnetic gear device possesses higher magnetic flux densities, thereby generating greater transmitted torque.


2014 ◽  
Vol 962-965 ◽  
pp. 2957-2960
Author(s):  
Qian Peng Han ◽  
Bo Peng

This article summarized the general process of parametric modeling and finite element analysis of spur gear,PRO/E used to create parametric model,and Patran used to finite element analysis.Parametric modeling can reduce design period of the similar products,and modal analysis provide the basis for the selection and optimization of gear.


2013 ◽  
Vol 405-408 ◽  
pp. 3222-3228
Author(s):  
Rong Gang Yin ◽  
Zhi Guo Li ◽  
Hong Xiang She ◽  
Jian Hai Zhang

In order to improve the modeling efficiency for finite element analysis pre-processing, a parametric modeling method of underground powerhouse for finite element analysis is proposed. By inputting the basic geometric parameters, different types of underground powerhouse models are built by using this method. The basic ideas, basic principle and the process of this parametric modeling are presented. And the parametric modeling procedure is coded by using VC++, interactive interface and display window are designed by using MFC and OpenGL. Finite element model of Houziyan underground powerhouse which is built by using the procedure proves that this method greatly improves the efficiency and precision of modeling.


Sign in / Sign up

Export Citation Format

Share Document