Rise of a bubble through a self-rewetting fluid under the combined influence of gravity-driven convection and Marangoni convection

Author(s):  
Abha Kumari ◽  
Rajat Tripathi

In this study, the influence of gravity-driven convection and Marangoni convection due to the temperature-dependent surface tension gradient on the rise of an axisymmetric bubble moving in another fluid in a self-rewetting system inside a rectangular tube is studied in the presence and absence of a magnetic field. The axisymmetric bubble (fluid 1) moving in another fluid (fluid 2) is considered immiscible. A two-dimensional cylindrical polar coordinate system has been chosen to present the sketch of the problem. Partial differential equations governing the mentioned flow situations are written and converted into non-dimensional forms and their analytical solutions have been obtained. The deformation in the bubble in the form of its radius and length is simulated. The motion of the droplet is also analysed in the microgravity region by graphing the position of the bubble. The graphical results show that there is a decrease in the contribution of the Marangoni effect and gravitational effect when the magnetic field is increased. In the absence of a magnetic field, the contribution of both the Marangoni effect and gravitational effect decrease on increasing the relative viscosity.

Author(s):  
Francisco J. Arias ◽  
Salvador A. De Las Heras

Abstract In this work, consideration is given to capillary convection on ferrofluids from the concentration gradient induced when a nonhomogeneous magnetic field is applied. It is known that mass transfer along an interface between two fluids can appear due to a gradient of the surface tension in the so-called Marangoni effect (or Gibbs–Marangoni effect). Because the surface tension is both thermal and concentration dependent, Marangoni convection can be induced by either a thermal or a concentration gradient, where in the former case, it is generally referred as thermocapillary convection. Now, it has been theoretically and experimentally demonstrated that a ferrofluid under the action of a non-homogeneous magnetic field can induce a concentration gradient of suspended magnetic nanoparticles, and also the effect of Fe3O4 nanoparticles on the surface tension has been measured. Therefore, by deductive reasoning and taking into account the above mentioned facts, it is permissible to infer ferrohydrodynamic capillary convection on magnetic fluids under the presence of a magnetic gradient field. Utilizing a simplified physical model, the phenomenon was investigated and it was found that ferrohydrodynamic-Marangoni convection could be induced with particle size in the range up to 10 nm, which is the range of magnetic fluids to escape magnetic agglomeration.


2021 ◽  
Vol 1825 (1) ◽  
pp. 012082
Author(s):  
I A Kudus ◽  
K Wibowo ◽  
P I Wahyono ◽  
F I Diah ◽  
E Mulyani ◽  
...  

2017 ◽  
Author(s):  
Izzati Khalidah Khalid ◽  
Nor Fadzillah Mohd Mokhtar ◽  
Zailan Siri ◽  
Zarina Bibi Ibrahim ◽  
Siti Salwa Abd Gani

2021 ◽  
Author(s):  
Noor Wali Khan ◽  
Arshad Khan ◽  
Muhammad Usman ◽  
Taza Gul ◽  
Abir Mouldi ◽  
...  

Abstract The investigations about thin-film flow play a vital role in the field of optoelectronics and magnetic devices. Thin films are reasonably hard and thermally stable but are more fragile. The thermal stability of thin film can be further improved by incorporating the effects of nanoparticles. In the current work, a stretchable surface is considered upon which hybrid nanofluid thin-film flow is taken into account. The idea of augmenting heat transmission is focused in current work by making use of hybrid nanofluid. The flow is affected by variations in the viscous forces along with viscous dissipation effects and Marangoni convection. A time-constrained magnetic field is applied in the normal direction to the flow system. The equations governing the flow system are shifted to a non-dimensional form by applying similarity variables. The homotopy analysis method (HAM) has been employed to find the solution of resultant equations. It has been noticed in this study that, the flow characteristics decline with augmentation in magnetic, viscosity, and unsteadiness parameters while grow up with enhancing values of thin-film parameter. Thermal characteristics are supported by the growing values of the Eckert number and unsteadiness parameter while opposed by the viscosity parameter and Prandtl number. The numerical impact of different emerging parameters upon skin friction and Nusselt number has been calculated in tabular form. A comparison of current work with established result has carried out with a good agreement in both results.


Author(s):  
C. Rajalingham ◽  
R. B. Bhat ◽  
G. D. Xistris

Abstract The natural frequencies and natural modes of vibration of uniform elliptic plates with clamped, simply supported and free boundaries are investigated using Rayleigh-Ritz method. A modified polar coordinate system is used to investigate the problem. Energy expressions in Cartesian coordinate system are transformed into the modified polar coordinate system. Boundary characteristic orthogonal polynomials in the radial direction, and trigonometric functions in the angular direction are used to express the deflection of the plate. These deflection shapes are classified into four basic categories, depending on its symmetrical or antisymmetrical property about the major and minor axes of the ellipse. The first six natural modes in each of the above categories are presented in the form of contour plots.


Sign in / Sign up

Export Citation Format

Share Document