Effects of ECAE process on the fatigue crack growth rate of copper metal

Author(s):  
Eslam Rezaei ◽  
Kaveh Abbasi ◽  
Reza Pourhamid

In this study, the effects of the number of passes performed by the Equal Channel Angular Extrusion as a severe plastic deformation process on copper metal's microstructure and mechanical properties, especially its resistance to fatigue crack growth, have been investigated. The experimental results show that as the number of processes passes increases, the copper metal grains become finer and as a result less stress is concentrated at the starting points of the fatigue fracture, which delays the fracture. For example, after performing 8 ECAE process passes, the threshold values of fatigue crack growth increases by 113.2% relative to the base metal. Moreover, as the grains become smaller, the number of grains and consequently the number of grain boundaries will increase and thus more obstacles will be placed in the way of crack growth. Also, the SEM images indicate that many fine and equiaxed dimples in processed copper become smaller as the number of passes increases. This shows that finer and more equiaxed grains will be obtained by repeating the ECAE process and thus repeating the occurrence of recrystallization. It was cleared that this process improves the mechanical properties of the copper other than the failure strain. However, by increasing the number of process passes, this problem can be significantly reduced. Highlights The fine grains considerably delay the fatigue fracture By ECAE process, the threshold value of fatigue crack growth increases by 113.2% All zones resulting from fatigue fracture are recognizable in fractured ECAE sample The SEM images indicate that a ductile failure has occurred in the tensile samples

2014 ◽  
Vol 627 ◽  
pp. 305-308 ◽  
Author(s):  
Tomasz Brynk ◽  
Barbara Romelczyk ◽  
Zbigniew Pakiela ◽  
Tomasz Kurzynowski ◽  
Edward Chlebus

Mini-samples technique was utilized to determine mechanical properties of technically pure titanium produced by means of selective laser melting (SLM). Full-field digital image correlation (DIC) measurements and inverse method were applied for crack tip position and stress intensity factors calculations in the case of fatigue crack growth rate tests. DIC was also used for strain measurement during tensile tests on sub sized samples. There was studied the influence of samples orientation on the mechanical properties of mini-samples. Samples were cut out from rectangular cubes and were oriented with 0°, 45° or 90° angle to the direction of laser beam travel. There were also tested samples directly produced via SLM. Additionally microstructure observations were performed to verify the quality of SLM processed materials and explain mechanical properties variations.


Author(s):  
Yoo Choi ◽  
Deok-Geun Kim ◽  
Jeong-Yeol Park ◽  
Kyoung-Seok Lee ◽  
Jae-Myung Lee ◽  
...  

In general, aluminum alloy is a commonly used for liquefied natural gas (LNG) storage systems. In this regard, it is important to know exact mechanical properties at cryogenic temperature. There are many researches to assess mechanical properties of aluminum alloy, such as tensile strength, fatigue performance and fracture toughness. Fatigue crack growth rate (FCGR) is important to predict the service life. In particular, mean stress effect can significantly affect the fatigue life. In this regard, this study carried out by a series of FCGR test at five different stress ratios (R=0.1, 0.3, 0.5, 0.7 and 0.85). The major objective of this paper is to suggest a new model that can consider the mean stress effect on FCGR of aluminum alloy in a unified manner. A mean stress equation is incorporated into Paris’ law. In order to validate the model, FCGR test data of aluminum alloy is compared with Walker’s relationship. Compared to the other existing model, the new model is found to exhibit more accurate result compared to Walker model.


Sign in / Sign up

Export Citation Format

Share Document