Adaptive nonsingular terminal sliding mode guidance law against maneuvering targets with impact angle constraint

Author(s):  
Weihong Wang ◽  
Shaofeng Xiong ◽  
Xiaodong Liu ◽  
Sen Wang ◽  
Lujin Ma
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Tianning Wang ◽  
Shengjing Tang ◽  
Jie Guo ◽  
Haoqiang Zhang

The implementation of advanced guidance laws with bearings-only measurements requires estimation of the range information. To improve estimation accuracy and satisfy the impact angle constraint, this paper proposes a two-phase optimal guidance law consisting of an observing phase and an attacking phase. In the observing phase, the determinant of Fisher information matrix is maximized to achieve the optimal observability and a suboptimal solution expressed by leading angle is derived analytically. Then, a terminal sliding-mode guidance law is designed to track the desired leading angle. In the followed attacking phase, an optimal guidance law is integrated with a switching term to satisfy both the impact angle constraint and the field-of-view constraint. Finally, comparison studies of the proposed guidance law and a traditional optimal guidance law are conducted on stationary targets and maneuvering targets cases. Simulation results demonstrate that the proposed guidance law is able to improve the range observability and achieve better terminal performances including impact angle accuracy and miss distance.


2022 ◽  
pp. 1-19
Author(s):  
S. Liu ◽  
B. Yan ◽  
R. Liu ◽  
P. Dai ◽  
J. Yan ◽  
...  

Abstract The cooperative guidance problem of multiple inferior missiles intercepting a hypersonic target with the specific impact angle constraint in the two-dimensional plane is addressed in this paper, taking into consideration variations in a missile’s speed. The guidance law is designed with two subsystems: the direction of line-of-sight (LOS) and the direction of normal to LOS. In the direction of LOS, by applying the algebraic graph theory and the consensus theory, the guidance command is designed to make the system convergent in a finite time to satisfy the goal of cooperative interception. In the direction of normal to LOS, the impact angle is constrained to transform into the LOS angle at the time of interception. In view of the difficulty of measuring unknown target acceleration information in real scenarios, the guidance command is designed by utilising a super-twisting algorithm based on a nonsingular fast-terminal sliding mode (NFTSM) surface. Numerical simulation results manifest that the proposed guidance law performs efficiently and the guidance commands are free of chattering. In addition, the overall performance of this guidance law is assessed with Monte Carlo runs in the presence of measurement errors. The simulation results demonstrate that the robustness can be guaranteed, and that overall efficiency and accuracy in intercepting the hypersonic target are achieved.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Kuanqiao Zhang ◽  
Suochang Yang

Aiming at the requirement that some missiles need to meet certain impact angles when attacking targets, we consider the second-order dynamic characteristics of autopilot, thereby proposing a second-order sliding mode guidance law with impact angle constraint. Firstly, based on the terminal sliding mode control, we design a fast nonsingular terminal sliding mode guidance law with impact angle constraint. Based on the second-order sliding mode control, a second-order sliding mode guidance law with impact angle constraint is proposed. We have proved its finite time convergence characteristics and presented the specific convergence time expression. Subsequently, the dynamic characteristics of the autopilot are approximated to the second-order link. Combined with the dynamic surface control theory, we proposed a second-order sliding mode guidance law considering the second-order dynamic characteristics of the autopilot and proved its finite-time convergence characteristics. Finally, the effectiveness and superiority of the proposed guidance law are verified by comparative simulation experiments.


Author(s):  
Xinghe Zhou ◽  
Weihong Wang ◽  
Zhenghua Liu

For the guidance problem of multiple missiles attacking a maneuvering target simultaneously in plane, a novel fixed-time distributed cooperative guidance law with impact angle constraint is designed in this paper. The design process of distributed cooperative guidance law can be roughly divided into two parts. First, based on the nonsingular terminal sliding mode control, a cooperative guidance law on the line-of-sight (LOS) direction is developed, which can guarantee that all missiles hit the maneuvering target simultaneously. Second, another guidance law in normal direction of the LOS direction is designed to achieve the fixed-time convergence of LOS angular rate and LOS angle. Finally, numerical simulations verify the effectiveness of the proposed cooperative guidance law for different engagement scenarios.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Fang Yang ◽  
Kuanqiao Zhang ◽  
Lei Yu

A nonsingular fast terminal sliding mode guidance law with an impact angle constraint is proposed to solve the problem of missile guidance accuracy and impact angle constraint for maneuvering targets. Aiming at the singularity problem of the terminal sliding mode, a fast terminal sliding mode surface with finite-time convergence and impact angle constraint is designed based on fixed-time convergence and piecewise sliding mode theory. To weaken chattering and suppress interference, a second-order sliding mode supertwisting algorithm is improved. By designing the parameter adaptive law, an adaptive smooth supertwisting algorithm is designed. This algorithm can effectively weaken chattering without knowing the upper bound information of interference, and it converges faster. Based on the proposed adaptive supertwisting algorithm and the sliding mode surface, a guidance law with the impact angle constraint is designed. The global finite-time convergence of the guidance law is proved by constructing the Lyapunov function. The simulation results verify the effectiveness of the proposed guidance law, and compared with the existing terminal sliding mode guidance laws, the proposed guidance law has higher guidance precision and angle constraint accuracy.


Sign in / Sign up

Export Citation Format

Share Document